Advertisement

Chemical Papers

, Volume 73, Issue 1, pp 261–267 | Cite as

Impact of ligands structure on formation of hydrophilic colloids from their Gd(III) complexes with high magnetic relaxivity

  • Alexey StepanovEmail author
  • Gulnaz Gimazetdinova
  • Sofia Kleshnina
  • Irek Nizameev
  • Rustem Amirov
  • Svetlana Solovieva
  • Rinas Nagimov
  • Alexandra Voloshina
  • Anastasiya Sapunova
  • Asiya Mustafina
Short Communication
  • 67 Downloads

Abstract

The present paper introduces specific structure of thiacalix[4]arenes derivatives adopting 1,3-alternate conformation with alkyl-carboxyl substituents as ligands for conversion of their complexes with Gd(III) ions into hydrophilic colloids with longitudinal (r1) and transverse relaxivities (r2) higher than that of Gd(III)-based commercial contrast agents (r1 = 20.53 and r2 = 23.46 mM−1 s−1 at 0.47 T). pH-dependent coordination of Gd(III) ions via carboxyl substituents of the thiacalix[4]arenes is the driving force for the complex formation, while the precipitation of the complexes is the basis for the colloids formation. Tert-butyl and butyl substituents of thiacalix[4]arenes were found to be of crucial impact on the complex precipitation. The specific inner- and outer-sphere ligand environment provided by the thiacalix[4]arene ligands was revealed as the optimal for high r1 and r2 values of the colloids. High relaxivities along with negligible cytotoxicity open up the possibility of their further use as positive contrast agents in magnetic resonance imaging (MRI).

Keywords

Carboxylated thiacalix[4]arenes Longitudinal relaxivity Paramagnetic colloids Hydrophilic colloids Gd(III) ions 

Notes

Acknowledgements

We are grateful to RSF (Grant Number 17-13-01013) for financial support of this work.

Supplementary material

11696_2018_581_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1309 kb)

References

  1. Aime S et al (1996) Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin. J Biol Inorg Chem 1:312–319.  https://doi.org/10.1007/s007750050059 Google Scholar
  2. Bridot J-L et al (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084.  https://doi.org/10.1021/ja068356j Google Scholar
  3. Caille F et al (2012) Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents. Inorg Chem 51:2522–2532.  https://doi.org/10.1021/ic202446e Google Scholar
  4. Caravan P et al (2009) Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol Imaging 4:89–100.  https://doi.org/10.1002/cmmi.267 Google Scholar
  5. Carne-Sanchez A et al (2013) Relaxometry studies of a highly stable nanoscale metal-organic framework made of Cu(II), Gd(III), and the macrocyclic DOTP. J Am Chem Soc 135:17711–17714.  https://doi.org/10.1021/ja4094378 Google Scholar
  6. Carniato F et al (2010) A chemical strategy for the relaxivity enhancement of GdIII chelates anchored on mesoporous silica nanoparticles. Chem Eur J 16:10727–10734.  https://doi.org/10.1002/chem.201000499 Google Scholar
  7. Cho M et al (2014) Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging. Nanoscale 6:13637–13645.  https://doi.org/10.1039/c4nr03505d Google Scholar
  8. Evanics F et al (2006) Water-soluble GdF3 and GdF3/LaF3 nanoparticles—physical characterization and NMR relaxation properties. Chem Mater 18:2499–2505.  https://doi.org/10.1021/cm052299w Google Scholar
  9. Hifumi H et al (2006) Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 128:15090–15091.  https://doi.org/10.1021/ja066442d Google Scholar
  10. Joos A et al (2017) Size-dependent MR relaxivities of magnetic nanoparticles. J Magn Magn Mater 427:122–126.  https://doi.org/10.1016/j.jmmm.2016.11.021 Google Scholar
  11. Luo NQ et al (2013) Ligand free gadolinium oxide for in vivo T1-weighted magnetic resonance imaging. Phys Chem Chem Phys 15:12235–12240.  https://doi.org/10.1039/c3cp51530c Google Scholar
  12. Majeed S, Shivashankar SA (2014) Rapid microwave-assisted synthesis of Gd2O3 and Eu:Gd2O3 nanocrystals: characterization, magnetic, optical and biological studies. J Mater Chem B 2:5585–5593.  https://doi.org/10.1039/c4tb00763h Google Scholar
  13. Morcos S (2008) Extracellular gadolinium contrast agents: differences in stability. Eur J Radiol 66:175–179.  https://doi.org/10.1016/j.ejrad.2008.02.010 Google Scholar
  14. Na HB et al (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed 46:5397–5401.  https://doi.org/10.1021/acsnano.7b07241 Google Scholar
  15. Park YG et al (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3:3663–3669.  https://doi.org/10.1021/nn900761s Google Scholar
  16. Pereira GA et al (2010) Evaluation of [Ln(H2cmp)(H2O)] metal organic framework materials for potential application as magnetic resonance imaging contrast agents. Inorg Chem 49:2969–2974.  https://doi.org/10.1021/ic9025014 Google Scholar
  17. Podyachev SN et al (2012) New bifunctional compounds obtained by selective hydrolysis of tetrathiacalix[4]arene tetraethyl esters with Cs2CO3. Tetrahedron Lett 53:3135–3139.  https://doi.org/10.1016/j.tetlet.2012.04.041 Google Scholar
  18. Reiter WJ et al (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025.  https://doi.org/10.1021/ja0627444 Google Scholar
  19. Rodriguez-Liviano S et al (2013) Synthesis and properties of multifunctional tetragonal Eu:GdPO4, nanocubes for optical and magnetic resonance imaging applications. ChemInform 44:647–654.  https://doi.org/10.1021/ic3016996 Google Scholar
  20. Rohrer M et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724.  https://doi.org/10.1097/01.rli.0000184756.66360.d3 Google Scholar
  21. Shamsutdinova N et al (2018) Tuning magnetic relaxation properties of “hard cores” in core-shell colloids by modification of “soft shell”. Colloid Surf B 162:52–59.  https://doi.org/10.1016/j.colsurfb.2017.10.070 Google Scholar
  22. Statsny V et al (2004) Synthesis of (thia)calix[4]arene oligomers: towards calixarene-based dendrimers. Tetrahedron 60:3383–3391.  https://doi.org/10.1016/j.tet.2004.02.036 Google Scholar
  23. Stepanov AS et al (2017) Alkyl-malonate-substituted thiacalix[4]arenes as ligands for bottom-up design of paramagnetic Gd(III)-containing colloids with low cytotoxicity. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.05.017 Google Scholar
  24. Wang L et al (2017) Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T1–T2 dual-mode contrast agents for accurate liver tumor imaging. Nanoscale 9:4516–4523.  https://doi.org/10.1039/C7NR01134B Google Scholar
  25. Zairov R et al (2017) Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Sci Rep.  https://doi.org/10.1038/s41598-017-14409-6 Google Scholar
  26. Zhou C et al (2014) Facile synthesis of single-phase mesoporous Gd2O3:Eu nanorods and their application for drug delivery and multimodal imaging. Part Part Syst Char 31:675–684.  https://doi.org/10.1002/ppsc.201300342 Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Alexey Stepanov
    • 1
    Email author
  • Gulnaz Gimazetdinova
    • 2
  • Sofia Kleshnina
    • 1
  • Irek Nizameev
    • 1
    • 2
  • Rustem Amirov
    • 3
  • Svetlana Solovieva
    • 1
  • Rinas Nagimov
    • 2
  • Alexandra Voloshina
    • 1
  • Anastasiya Sapunova
    • 1
  • Asiya Mustafina
    • 1
  1. 1.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RASKazanRussia
  2. 2.Kazan National Research Technological UniversityKazanRussia
  3. 3.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations