Chemical Papers

, Volume 73, Issue 1, pp 159–164 | Cite as

The ICP-OES method for determination of zinc in Enchytraeus crypticus and agarose gel from ecotoxicological tests

  • Jan Patočka
  • Anna KrejčováEmail author
  • Klára Stojarová
  • Kateřina Hrdá
  • Miloslav Pouzar
Original Paper


A simple ICP-OES (inductively coupled plasma optical emission spectrometry) method for determination of zinc in Enchytraeus crypticus and agarose gel samples from ecotoxicological tests is proposed. The E. crypticus individuals are separated, water washed, wet weighed and dissolved in tetramethylammonium hydroxide. The gel is digested in HNO3. The method (limit of detection in mg kg−1: 0.90 for E. crypticus bulk biomass, 14 for one E. crypticus worm and 0.0018 for gel) was employed in the evaluation of ZnO nanoparticles (ZnO-NPs) compared to ZnCl2: bioaccumulation factors were 57–180 for ZnCl2 and 23–65 for ZnO-NPs.


Enchytraeus crypticus Zinc oxide nanoparticles Ecotoxicity test ICP-OES Microsamples Targeted analysis 



The authors acknowledge the support from the University of Pardubice, Faculty of Chemical Technology project SG FCHT 05/16 and SG FCHT 05/17.


  1. Ardestani MM, van Straalen NM, van Gestel CAM (2014) Uptake and elimination kinetics of metals in soil invertebrates: a review (Review). Environ Pollut 193:277–295. CrossRefGoogle Scholar
  2. Bradham KD, Dayton EA, Basta NT, Schroder J, Payton M, Lanno RP (2006) Effect of soil properties on lead bioavailability and toxicity to earthworms (Article; Proceedings Paper). Environ Toxicol Chem 25(3):769–775. CrossRefGoogle Scholar
  3. Carbone S, Hertel-Aas T, Joner EJ, Oughton DH (2016) Bioavailability of CeO2 and SnO2 nanoparticles evaluated by dietary uptake in the earthworm Eisenia fetida and sequential extraction of soil and feed (Article). Chemosphere 162:16–22. CrossRefGoogle Scholar
  4. Castro-Ferreira MP, Roelofs D, van Gestel CAM, Verweij RA, Soares A, Amorim MJB (2012) Enchytraeus crypticus as model species in soil ecotoxicology (Article). Chemosphere 87(11):1222–1227. CrossRefGoogle Scholar
  5. Cedergreen N, Holm PE, Marcussen H (2013) The use of elements as a substitute for biomass in toxicokinetic studies in small organisms (Article). Ecotoxicology 22(10):1509–1515. CrossRefGoogle Scholar
  6. Gonzalez L, Cundari E, Leyns L, Kirsch-Volders M (2017) Towards a new paradigm in nano-genotoxicology: facing complexity of nanomaterials’ cellular interactions and effects (Article; Proceedings Paper). Basic Clin Pharmacol Toxicol 121:23–29. CrossRefGoogle Scholar
  7. Hrda K, Oprsal J, Knotek P, Pouzar M, Vlcek M (2016) Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media (Article). Chem Pap 70(11):1512–1520. CrossRefGoogle Scholar
  8. ISO (2014) Soil Quality—effects of contaminants on Enchytraeidae (Enchytraeus sp.)—determination of effects on reproduction. No. 16387. GenevaGoogle Scholar
  9. Kobetičová K, Hofman J, Holoubek I (2010) Ecotoxicity of wastes in avoidance tests with Enchytraeus albidus, Enchytraeus crypticus and Eisenia fetida (Oligochaeta). Waste Manag 30(4):558–564. CrossRefGoogle Scholar
  10. Krug HF (2014) Nanosafety research-are we on the right track? (Review). Angew Chem Int Ed 53(46):12304–12319. Google Scholar
  11. Luo W, Verweij RA, van Gestel CAM (2014) Contribution of soil properties of shooting fields to lead bioavailability and toxicity to Enchytraeus crypticus. Soil Biol Biochem 76:235–241. CrossRefGoogle Scholar
  12. OECD (2010) Test No. 317: Bioaccumulation in Terrestrial Oligochaetes. In: OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing, Paris. Google Scholar
  13. OECD (2016) Test No. 220: Enchytraeid Reproduction Test. In: OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. Google Scholar
  14. Peijnenburg WJGM, Posthuma L, Zweers PGPC, Baerselman R, de Groot AC, Van Veen RPM et al (1999) Prediction of metal bioavailability in Dutch field soils for the Oligochaete Enchytraeus crypticus. Ecotoxicol Environ Saf 43(2):170–186. CrossRefGoogle Scholar
  15. Posthuma L, Baerselman R, Van Veen RPM, Dirven-Van Breemen EM (1997) Single and joint toxic effects of copper and zinc on reproduction of Enchytraeus crypticus in relation to sorption of metals in soils (Article). Ecotoxicol Environ Saf 38(2):108–121. CrossRefGoogle Scholar
  16. Topuz E, van Gestel CAM (2015) Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium (Article). Environ Toxicol Chem 34(12):2816–2823. CrossRefGoogle Scholar
  17. van Straalen NM, van Wensem J (1986) Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environ Pollut Ser A Ecol Biol 42(3):209–221. CrossRefGoogle Scholar
  18. van Straalen NM, Butovsky RO, Pokarzhevskii AD, Zaitsev AS, Verhoef SC (2001) Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia) (Article). Pedobiologia 45(5):451–466. CrossRefGoogle Scholar
  19. Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg W (2004) Internal metal sequestration and its ecotoxicological relevance: a review (Review). Environ Sci Technol 38(18):4705–4712. CrossRefGoogle Scholar
  20. Zhang L, Van Gestel CAM (2017a) The toxicity of different lead salts to Enchytraeus crypticus in relation to bioavailability in soil. Environ Toxicol Chem. Google Scholar
  21. Zhang L, Van Gestel CAM (2017b) Toxicokinetics and toxicodynamics of lead in the soil invertebrate Enchytraeus crypticus (Article). Environ Pollut 225:534–541. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Jan Patočka
    • 1
  • Anna Krejčová
    • 1
    Email author
  • Klára Stojarová
    • 1
  • Kateřina Hrdá
    • 1
  • Miloslav Pouzar
    • 1
  1. 1.Department of Environmental and Chemical EngineeringUniversity of PardubicePardubiceCzech Republic

Personalised recommendations