Advertisement

Chemical Papers

, Volume 72, Issue 12, pp 3189–3194 | Cite as

Copper nanotube composite membrane as a catalyst in Mannich reaction

  • Arman B. Yeszhanov
  • Anastassiya A. Mashentseva
  • Ilya V. Korolkov
  • Yevgeniy G. Gorin
  • Artem L. Kozlovskiy
  • Maxim V. Zdorovets
Original Paper

Abstract

Nanoporous poly(ethylene terephthalate) track-etched membranes (PET TeMs) prepared by +15Kr84 ions bombardment (1.75 MeV per nucleon with the ion fluency of 4 × 107 cm−2) and sequential etching were used in this study as a template for electrochemical deposition of highly ordered copper nanotube arrays. X-ray diffraction, scanning electron microscopy and energy-dispersive analysis were used for a complex analysis of synthesized composite membranes. “As-prepared” Cu/PET composites were used as a heterogeneous catalyst in one-pot-three-component Mannich reaction of acetophenone, benzaldehyde and aniline. The effect of reaction time on the synthesis of β-amino ketone was studied and the best yield was isolated after 24 h. The reusability of the studied composites was checked at 25 °C 5 times consecutively. We found that PET TeMs with embedded copper nanotubes could be recycled and reused several times: yields were decreased from 78.2% (1st cycle) to the 19.0% (5th cycle).

Keywords

Track-etched membranes Electrochemical deposition Template synthesis Cu nanotubes Catalysis Mannich reaction 

References

  1. Allochio Filho JF, Lemos BC, de Souza AS, Pinheiro S, Greco SJ (2017) Multicomponent Mannich reactions: general aspects, methodologies and applications. Tetrahedron 73:6977–7004.  https://doi.org/10.1016/j.tet.2017.10.063 CrossRefGoogle Scholar
  2. Borgekov DB, Mashentseva AA, Kislitsin S, Kozlovskiy A, Russakova A, Zdorovets M (2015) Temperature dependent catalytic activity of Ag/PET ion-track membranes composites. Acta Phys Pol A 128:871–874.  https://doi.org/10.12693/APhysPolA.128.871 CrossRefGoogle Scholar
  3. Davydov AD, Volgin VM (2016) Template electrodeposition of metals. Review. Russ J Electrochem 52:806–831.  https://doi.org/10.1134/S1023193516090020 CrossRefGoogle Scholar
  4. Felix E-M, Antoni M, Pause I, Schaefer S, Kunz U, Weidler N, Muench F, Ensinger W (2016) Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction. Green Chem 18:558–564.  https://doi.org/10.1039/C5GC01356A CrossRefGoogle Scholar
  5. Ferain E, Legras R (2003) Track-etch templates designed for micro- and nanofabrication. Nucl Instrum Methods Phys Res B 208:115–122.  https://doi.org/10.1016/S0168-583X(03)00637-2 CrossRefGoogle Scholar
  6. Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811.  https://doi.org/10.1021/acs.chemrev.5b00482 CrossRefPubMedGoogle Scholar
  7. Kadyrzhanov KK, Kozlovskiy AL, Kanyukov E, Mashentseva AA, Zdorovets MV, Shumskaya E (2017) Variation of polymer-template pore geometry as a means of controlling the magnetic properties of metallic nanostructures. Pet Chem 57:790–795.  https://doi.org/10.1134/S0965544117090055 CrossRefGoogle Scholar
  8. Kaniukov E, Kozlovsky A, Shlimas D, Zdorovets M, Yakimchuk D, Shumskaya E, Kadyrzhanov K (2017) Electrochemically deposited copper nanotubes. J Surf Invest 11:270–275.  https://doi.org/10.1134/S1027451017010281 CrossRefGoogle Scholar
  9. Kidwai M, Mishra NK, Bansal V, Kumar A, Mozumdar S (2009) Novel one-pot Cu-nanoparticles-catalyzed Mannich reaction. Tetrahedron Lett 50:1355–1358.  https://doi.org/10.1016/j.tetlet.2009.01.031 CrossRefGoogle Scholar
  10. Korolkov IV, Borgekov DB, Mashentseva AA, Güven O, Bakar AA, Kozlovskiy AL, Zdorovets M (2017) The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET composites. Chem Pap 71:2353–2358.  https://doi.org/10.1007/s11696-017-0229-1 CrossRefGoogle Scholar
  11. Korolkov IV, YeG Gorin, Yeszhanov AB, Kozlovskiy AL, Zdorovets MV (2018) Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Mater Chem Phys 205:55–63.  https://doi.org/10.1016/j.matchemphys.2017.11.006 CrossRefGoogle Scholar
  12. MaGee DI, Dabiri M, Salehi P, Torkian L (2011) Highly efficient one-pot three-component Mannich reaction catalyzed by ZnO-nanoparticles in water. ARKIVOC 2011:156–164.  https://doi.org/10.3998/ark.5550190.0012.b14 CrossRefGoogle Scholar
  13. Manickam SS, McCutcheon JR (2015) Model thin film composite membranes for forward osmosis: demonstrating the inaccuracy of existing structural parameter models. J Membr Sci 483:70–74.  https://doi.org/10.1016/j.memsci.2015.01.017 CrossRefGoogle Scholar
  14. Mashentseva AA, Zdorovets MV (2017) Composites based on polyethylene terephthalate track-etched membranes and silver as hydrogen peroxide decomposition catalysts. Pet Chem 57:954–960.  https://doi.org/10.1134/S0965544117110056 CrossRefGoogle Scholar
  15. Mashentseva AA, Borgekov DB, Kislitsin S, Zdorovets MV, Migunova AA (2015a) Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes. Nucl Instrum Methods Phys Res B 365:70–74.  https://doi.org/10.1016/j.nimb.2015.07.063 CrossRefGoogle Scholar
  16. Mashentseva AA, Borgekov DB, Niyazova DT, Zdorovets MV (2015b) Evaluation of the catalytic activity of the composite track-etched membranes for p-nitrophenol reduction reaction. Pet Chem 50:810–815.  https://doi.org/10.1134/S0965544115100151 CrossRefGoogle Scholar
  17. Muench F, Rauber M, Stegmann Ch, Lauterbach S, Kunz U, Kleebe HJ, Ensinger W (2011) Ligand-optimized electroless synthesis of silver nanotubes and their activity in the reduction of 4-nitrophenol. Nanotechnology 22:415602.  https://doi.org/10.1088/0957-4484/22/41/415602 CrossRefPubMedGoogle Scholar
  18. Muench F, Oezaslan M, Rauber M, Kaserer S, Fuchs A, Mankel E, Brötz J, Strasser P, Roth C, Ensinger W (2013) Electroless synthesis of nanostructured nickel and nickel-boron tubes and their performance as unsupported ethanol electrooxidation catalysts. J Power Sources 222:243–252.  https://doi.org/10.1016/j.jpowsour.2012.08.067 CrossRefGoogle Scholar
  19. Muench F, Oezaslan M, Svoboda I, Ensinger W (2015) Electroless plating of ultrathin palladium films: self-initiated deposition and application in microreactor fabrication. Mater Res Express 2:105010.  https://doi.org/10.1088/2053-1591/2/10/105010 CrossRefGoogle Scholar
  20. Muench F, Hussein L, Stohr T, Kunz U, Ayata S, Gärtner I, Kleebea HJ, Ensinger W (2016) Templated synthesis of pure and bimetallic gold/platinum nanotubes using complementary seeding and plating reactions. Colloids Surf A 508:197–204.  https://doi.org/10.1016/j.colsurfa.2016.08.036 CrossRefGoogle Scholar
  21. Muench F, Sun L, Kottakkat T, Antoni M, Schaefer S, Kunz U, Molina-Luna L, Duerrschnabel M, Kleebe HJ, Ayata S, Roth Ch, Ensinger W (2017) Free-standing networks of core-shell metal and metal oxide nanotubes for glucose sensing. ACS Appl Mater Interface 9:771–781.  https://doi.org/10.1021/acsami.6b13979 CrossRefGoogle Scholar
  22. Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S (2017) Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Coord Chem Rev 353:1–57.  https://doi.org/10.1016/j.ccr.2017.10.004 CrossRefGoogle Scholar
  23. Saadatjoo N, Golshekan M, Shariati Sh, Azizi P, Nemati F (2017) Ultrasound-assisted synthesis of b-amino ketones via a Mannich reaction catalyzed by Fe3O4 magnetite nanoparticles as an efficient, recyclable and heterogeneous catalyst. Arab J Chem 10:S735–S741.  https://doi.org/10.1016/j.arabjc.2012.11.018 CrossRefGoogle Scholar
  24. Schaefer S, Felix E-M, Muench F, Antoni M, Lohaus C, Brotz J, Kunz U, Gartner I, Ensinger W (2016) NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyst with high noble metal utilization. RSC Adv 6:70033–70039.  https://doi.org/10.1039/C6RA10235B CrossRefGoogle Scholar
  25. Shufang Yu, Welp U, Hua LZ, Rydh A, Kwok WK, Wang HH (2005) Fabrication of palladium nanotubes and their application in hydrogen sensing. Chem Mater 17:3445–3450.  https://doi.org/10.1021/cm048191i CrossRefGoogle Scholar
  26. Wirtz M, Yu S, Martin CR (2002) Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst 127:871–879.  https://doi.org/10.1039/B201939F CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Arman B. Yeszhanov
    • 1
  • Anastassiya A. Mashentseva
    • 1
  • Ilya V. Korolkov
    • 1
  • Yevgeniy G. Gorin
    • 1
    • 2
  • Artem L. Kozlovskiy
    • 1
    • 2
  • Maxim V. Zdorovets
    • 1
    • 2
    • 3
  1. 1.The Institute of Nuclear Physics of the Republic of KazakhstanAlmatyKazakhstan
  2. 2.L.N. Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations