Chemical Papers

, Volume 72, Issue 10, pp 2503–2512 | Cite as

Two organically templated metal sulfate/selenate: IR spectroscopy, crystal structure, and thermal behaviour

  • Marwa Abid Derbel
  • Ines Kadri
  • Houcine Naïli
  • Walid RekikEmail author
Original Paper


Two organically templated transition metal sulfate/selenate compounds with following formula (C6H14N2)[Co(H2O)6](S0.83Se0.17O4)2 (1) and (C4H12N2)[Cu(H2O)4(S0.39Se0.61O4)2]·2H2O (2) have been synthesized and crystallographically characterized. Both coordination compounds adopt the monoclinic symmetry, P21/c space group with the following unit-cell parameters: a = 12.0669(13) Å; b = 12.1768(11) Å; c = 12.1158(12) Å; β = 104.023(4)° and Z = 4 for (1) and P21/n space group with the following unit-cell parameters: a = 6.9783(2) Å; b = 11.7101(4) Å; c = 10.6238(3) Å; β = 104.431(2)° and Z = 2 for (2). While compound (1) is fully supramolecular with a crystal structure consisting of metallic cations octahedrally coordinated by six water molecules [Co(H2O)6]2+, dabcodiium and sulfate/selenate (S0.39Se0.61O4)2− anions which are linked via Ow–H…O and N–H…O Hydrogen bonds, compound (2) exhibits a beginning of condensation and its atomic arrangement is built from anionic entity [Cu(H2O)4(S0.39Se0.61O4)2]2− and piperazinediium cations (C4H12N2)2+ linked together by hydrogen bonds only. Through this work, we can conclude that the partial substitution of sulfur by selenium does not affect the atomic arrangement and that the type of structure adopted by the new solid solution is that of the pure sulfate or selenate-based compound according to the rate of substitution. The thermal decomposition of both precursors proceeds through several stages giving rise to the cobalt oxide and to the copper oxyselenate as final product for (1) and (2), respectively.

Graphical abstract


Partial substitution sulfate/selenate Crystal structure Thermal decomposition Supramolecular chemistry Coordination compounds 



Grateful thanks are expressed to T. Roisnel (Center de Diffractométrie X, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226 CNRS-Université de Rennes 1) and T. Gargouri (Unité de services communs et de Recherche; diffractomètre RX 4 cercles; Faculté des Sciences de Sfax) for the assistance in single-crystal X-ray diffraction data collection.

Supplementary material

11696_2018_503_MOESM1_ESM.tif (587 kb)
Supplementary material 1 (TIFF 586 kb)
11696_2018_503_MOESM2_ESM.tif (1.7 mb)
Supplementary material 2 (TIFF 1690 kb)


  1. Barreda-Argueso JA, Nataf L, Rodriguez-Lazcano Y, Aguado F, Gonzalez J, Valiente R, Rodriguez F, Wilhelm H, Jephcoat AP (2014) Bulk and molecular compressibilities of organic-inorganic hybrids [(CH3)4N]2MnX4 (X = Cl, Br), role of intermolecular interactions. Inorg Chem 53:10708–10715. CrossRefPubMedGoogle Scholar
  2. Brandenburg K (2004) Diamond, Version 3.2i, Crystal Impact GbR, BonnGoogle Scholar
  3. Brown ID (1996) Valence: a program for calculating bond valences. J Appl Crystallogr 29:479–480. CrossRefGoogle Scholar
  4. Bruker-AXS SAINT version 8.34A (2014) Bruker AXS Inc. MadisonGoogle Scholar
  5. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838. CrossRefGoogle Scholar
  6. Gillon AL, Lewis GR, Orpen AG, Rotter S, Starbuck J, Wang XM, Rodriguez-Martin Y, Ruiz-Perez C (2000) Organic–inorganic hybrid solids: control of perhalometallate solid state structures. J Chem Soc Dalton Trans. CrossRefGoogle Scholar
  7. Kadri I, Abid Derbel M, Naïli H, Roisnel T, Rekik W (2017) Effect of the partial substitution of sulfur by selenium on the atomic arrangement in sulfate- and selenate-based compounds. Chem Pap 71:2063–2073. CrossRefGoogle Scholar
  8. Kammoun O, Loulou N, Rekik W, Naïli H, Mhiri T, Bataille T (2012) Synthesis, crystal structure and characterization of a new dabcodiium hexaaquacobalt(II) bis(selenate) (C6H14N2)[Co(H2O)6](SeO4)2. J Chem Crystallogr 42:103–110. CrossRefGoogle Scholar
  9. Kammoun O, Rekik W, Bataille T, Mahmudov KT, Kopylovich Maximilian N, Naïli H (2013) Inorganic–organic hybrid double sulfates as catalysts of the diastereoselective nitroaldol reaction. J Organomet Chem 136:741–742. CrossRefGoogle Scholar
  10. Kammoun O, Naïli H, Rekik W, Bataille T (2015) Layered structure of a supramolecular hybrid sulfate salts: thermal stability and magnetic behaviour. Inorg Chim Acta 434:209–214. CrossRefGoogle Scholar
  11. Loulou Nkhili N, Rekik W, Mhiri T, Mahmudov Kamran T, Kopylovich Maximilian N, Naïli H (2014) Double piperazinediium and 1,4-diazabicyclo[2.2.2]octanediium MII selenates (MII = CoII, NiII, CuII, ZnII) as effective catalysts for Henry reaction. Inorg Chim Acta 412:27–31. CrossRefGoogle Scholar
  12. Loulou Nkhili N, Rekik W, Naïli H, Mhiri T, Bataille T (2017) Crystal structures and characterization of two divalent metal selenates templated by dabco (C6H14N2)[MII(H2O)6](SeO4)2 (MII: NiII, ZnII). Arab J Chem 10:S2509–S2517. CrossRefGoogle Scholar
  13. Matthews CJ, Broughton V, Bernardinelli G, Melich X, Brand G, Willis AC, Williams AF (2003) Molecular bricklaying: the protonatedbenzimidazole moiety as a synthon for crystal engineering. New J Chem 27:354–358. CrossRefGoogle Scholar
  14. Mei-Ling F, Jiang-Gao M, Jun-Ling S (2004) Syntheses, characterizations and crystal structures of three new organically templated or organically bonded zinc selenates. J Solid State Chem 177:3529–3535. CrossRefGoogle Scholar
  15. Naïli H, Rekik W, Bataille T, Mhiri T (2006) Crystal structure, phase transition and thermal behaviour of dabcodiium hexaaquacopper(II) bis(sulfate) (C6H14N2)[Cu(H2O)6](SO4)2. Polyhedron 25:3543–3554. CrossRefGoogle Scholar
  16. Naito T, Inabe T (2003) Molecular hexagonal perovskite: a new type of organic–inorganic hybrid conductor. J Solid State Chem 176:243–249. CrossRefGoogle Scholar
  17. Nonius, Kappa CCD Program Software, Nonius BV, Delft, The Netherlands, 1998Google Scholar
  18. Otwinowski Z, Minor W, Carter CW, Sweet RM et al (1997) Methods in enzymology, 276th edn. Academic Press, New York, p 307Google Scholar
  19. Rekik W, Naïli H, Bataille T, Roisnel T, Mhiri T (2006a) Supramolecular networks of transition metal sulfates templated by piperazine. Inorg Chim Acta 359:3954–3962. CrossRefGoogle Scholar
  20. Rekik W, Naïli H, Bataille T, Mhiri T (2006b) Synthesis, crystal structure, phase transition and thermal behaviour of a new dabcodiium hexaaquanickel(II) bis(sulphate) (C6H14N2)[Ni(H2O)6](SO4)2. J Organomet Chem 691:4725–4732. CrossRefGoogle Scholar
  21. Rekik W, Naïli H, Mhiri T, Bataille T (2008) [NH3(CH2)2NH3][Co(SO4)2(H2O)4]: chemical preparation, crystal structure, thermal decomposition and magnetic properties. Mater Res Bull 43:2709–2718. CrossRefGoogle Scholar
  22. Rekik W, Naïli H, Mhiri T, Bataille T (2009) New transition metal sulfates templated by 1,4-butanediamine (C4H14N2)[MII(H2O)6](SO4)2·4H2O (MII: Co, Ni): structure, reactivity and thermal decomposition. Solid State Sci 11:614–621. CrossRefGoogle Scholar
  23. Rekik W, Naïli H, Mhiri T, Bataille T (2012) Three organically templated magnesium sulfates: chemical preparation, hydrogen-bonded structures and thermal behaviour. Solid State Sci 14:1503–1511. CrossRefGoogle Scholar
  24. Rother G, Worzala H, Bentrup U (1998) The first aqua pentafluoro manganates(III)—syntheses and structures. Z Anorg Allger Chem 624:1706–1711. CrossRefGoogle Scholar
  25. Rother G, Stief R, Bentrup U, Massa W (2011) Jahn–Teller-distorted dimeric anions in (cat) [Mn2F8(H2O)2]·2H2O (cat = pipzH2, dabcoH2) and (dabcoH2)2[Mn2F8(H2PO4)2]. J Fluor Chem 132:740–746. CrossRefGoogle Scholar
  26. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122. CrossRefGoogle Scholar
  27. Sheldrick GM (2014) SADABS version 2014/5. Bruker AXS Inc., MadisonGoogle Scholar
  28. Sheldrick GM (2015a) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. CrossRefGoogle Scholar
  29. Sheldrick GM (2015b) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. CrossRefGoogle Scholar
  30. Sobota P, Utko J, Jerzykiewicz LB (1998) Polynuclear aggregation of manganese dichloride. Syntheses, properties, and structures of polymeric [MnCl2(THF)1.6], dimeric [(THF)4Mg(μ-Cl)2MnCl2], and ionic [Mg(H2O)2(THF)4][Mg(H2O)4(THF)2][MnCl4]2·2THF compounds. Inorg Chem 37:3428–3431. CrossRefGoogle Scholar
  31. Stief R, Massa W (2004) Fluoromanganat(III)-anionen mit neuer tetramerer und kettenstruktur in (pipzH2)3[Mn4F18(H2O)]·(H2O) und (pipzH2)4[Mn2F9]2[MnF4(H2O)2][MnF4(HF)2]. Z Anorg Allger Chem 630:2502–2507. CrossRefGoogle Scholar
  32. Yahyaoui S, Rekik W, Naïli H, Mhiri T, Bataille T (2007) Synthesis, crystal structures, phase transition characterization and thermal decomposition of a new dabcodiium hexaaquairon(II) bis(sulfate): (C6H14N2)[Fe(H2O)6](SO4)2. J Solid State Chem 180:3560–3570. CrossRefGoogle Scholar
  33. Zhao YJ, Li XH, Wang S (2005) 1,4-Diazoniabicyclo [2.2.2] octane hexaaquacobalt(II) bis-(sulfate). Acta Crystallogr E61:m671–m672. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Marwa Abid Derbel
    • 1
  • Ines Kadri
    • 1
  • Houcine Naïli
    • 1
  • Walid Rekik
    • 1
    Email author
  1. 1.Laboratoire Physico-Chimie de l’État Solide, Département de Chimie, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations