The Effect of Intraoperative Dexmedetomidine Versus Morphine on Postoperative Morphine Requirements After Laparoscopic Bariatric Surgery

  • Carine Zeeni
  • Marie T. Aouad
  • Dayane Daou
  • Sara Naji
  • Samar Jabbour-Khoury
  • Ramzi S. Alami
  • Bassem Y. Safadi
  • Sahar M. Siddik-SayyidEmail author
Original Contributions



Dexmedetomidine is an α2 receptor agonist with sedative and analgesic properties. During bariatric surgery, its use may reduce postoperative opioid requirements, reduce their side effects, and improve quality of recovery.

The aim of this prospective randomized controlled trial was to compare the effect of dexmedetomidine bolus and infusion versus morphine bolus given prior to the end of laparoscopic bariatric surgery.


Sixty morbidly obese patients (BMI > 40 kg m−2) aged 18 to 60 years, undergoing laparoscopic sleeve gastrectomy, received morphine sulfate (bolus 0.08 mg kg−1 followed by a saline infusion) (group M, n = 30) or dexmedetomidine (loading dose of 1 μg kg−1 followed by 0.5 μg kg−1 h−1) (group D, n = 30) 30 min before the end of surgery.

Data collected included morphine consumption in the post-anesthesia care unit (PACU) (primary outcome) and at 24 h, pain intensity, nausea, heart rate, blood pressure, vomiting, sedation, and quality of recovery.


There was no significant difference in morphine consumption in the PACU (group D 12.2 ± 5.44 mg, group M 13.28 ± 6.64 mg, P = 0.54) or at 24 h (group D 40.67 ± 24.78 mg, group M 43.28 ± 27.79 mg, P = 0.75); when accounting for intraoperative morphine given group M had significantly higher morphine consumption when compared to group D (23.48 ± 6.22 mg vs. 12.22 ± 5.54 mg, respectively, P < 0.01). Group D patients had more cardiovascular stability.


Dexmedetomidine given prior to end of laparoscopic sleeve gastrectomy provides the same level of postoperative analgesia as morphine with better hemodynamic profile.


Dexmedetomidine Morphine Bariatric surgery Obesity Postoperative pain 



We would like to thank Mrs. Fadia Shebbo for her assistance with the study.

Financial Support and Sponsorship

This work was supported by an intramural medical practice plan grant of the American University of Beirut Medical Center.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Ebert TJ, Hall JE, Barney JA, et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–94.CrossRefGoogle Scholar
  2. 2.
    Talke P, Richardson CA, Scheinin M, et al. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth Analg. 1997;85(5):1136–42.CrossRefGoogle Scholar
  3. 3.
    Talke P, Chen R, Thomas B, et al. The hemodynamic and adrenergic effects of perioperative dexmedetomidine infusion after vascular surgery. Anesth Analg. 2000;90(4):834–9.CrossRefGoogle Scholar
  4. 4.
    Jaakola ML, Salonen M, Lehtinen R, et al. The analgesic action of dexmedetomidine--a novel alpha 2-adrenoceptor agonist--in healthy volunteers. Pain. 1991;46(3):281–5.CrossRefGoogle Scholar
  5. 5.
    Aho MS, Erkola OA, Scheinin H, et al. Effect of intravenously administered dexmedetomidine on pain after laparoscopic tubal ligation. Anesth Analg. 1991;73(2):112–8.CrossRefGoogle Scholar
  6. 6.
    Venn RM, Hell J, Grounds RM. Respiratory effects of dexmedetomidine in the surgical patient requiring intensive care. Crit Care. 2000;4(5):302–8.CrossRefGoogle Scholar
  7. 7.
    Hsu YW, Cortinez LI, Robertson KM, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101(5):1066–76.CrossRefGoogle Scholar
  8. 8.
    Abu-Halaweh S, Obeidat F, Absalom AR, et al. Dexmedetomidine versus morphine infusion following laparoscopic bariatric surgery: effect on supplemental narcotic requirement during the first 24 h. Surg Endosc. 2016;30(8):3368–74.CrossRefGoogle Scholar
  9. 9.
    Tufanogullari B, White PF, Peixoto MP, et al. Dexmedetomidine infusion during laparoscopic bariatric surgery: the effect on recovery outcome variables. Anesth Analg. 2008;106(6):1741–8.CrossRefGoogle Scholar
  10. 10.
    Ramsay MA, Saha D, Hebeler RF. Tracheal resection in the morbidly obese patient: the role of dexmedetomidine. J Clin Anesth. 2006;18(6):452–4.CrossRefGoogle Scholar
  11. 11.
    Hofer RE, Sprung J, Sarr MG, et al. Anesthesia for a patient with morbid obesity using dexmedetomidine without narcotics. Can J Anaesth. 2005;52(2):176–80.CrossRefGoogle Scholar
  12. 12.
    Feld JM, Hoffman WE, Stechert MM, et al. Fentanyl or dexmedetomidine combined with desflurane for bariatric surgery. J Clin Anesth. 2006;18(1):24–8.CrossRefGoogle Scholar
  13. 13.
    Thorell A, MacCormick AD, Awad S, et al. Guidelines for perioperative Care in Bariatric Surgery: enhanced recovery after surgery (ERAS) society recommendations. World J Surg. 2016;40(9):2065–83.CrossRefGoogle Scholar
  14. 14.
    Siyam MA, Benhamou D. Intubation in morbidly obese patients. Anesth Analg. 2003;96(3):913.CrossRefGoogle Scholar
  15. 15.
    Gornall BF, Myles PS, Smith CL, et al. Measurement of quality of recovery using the QoR-40: a quantitative systematic review. Br J Anaesth. 2013;111(2):161–9.CrossRefGoogle Scholar
  16. 16.
    Myles PS, Weitkamp B, Jones K, et al. Validity and reliability of a postoperative quality of recovery score: the QoR-40. Br J Anaesth. 2000;84(1):11–5.CrossRefGoogle Scholar
  17. 17.
    Arain SR, Ruehlow RM, Uhrich TD, et al. The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg. 2004;98(1):153–8. table of contentsCrossRefGoogle Scholar
  18. 18.
    Chu LF, Angst MS, Clark D. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain. 2008;24(6):479–96.CrossRefGoogle Scholar
  19. 19.
    Singler B, Troster A, Manering N, et al. Modulation of remifentanil-induced postinfusion hyperalgesia by propofol. Anesth Analg. 2007;104(6):1397–403. table of contentsCrossRefGoogle Scholar
  20. 20.
    Lee C, Song YK, Jeong HM, et al. The effects of magnesium sulfate infiltration on perioperative opioid consumption and opioid-induced hyperalgesia in patients undergoing robot-assisted laparoscopic prostatectomy with remifentanil-based anesthesia. Korean J Anesthesiol. 2011;61(3):244–50.CrossRefGoogle Scholar
  21. 21.
    Koppert W, Sittl R, Scheuber K, et al. Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology. 2003;99(1):152–9.CrossRefGoogle Scholar
  22. 22.
    Ueki M, Kawasaki T, Habe K, et al. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014;69(7):693–700.CrossRefGoogle Scholar
  23. 23.
    Xiang H, Hu B, Li Z, et al. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation. 2014;37(5):1763–70.CrossRefGoogle Scholar
  24. 24.
    Zheng Y, Cui S, Liu Y, et al. Dexmedetomidine prevents remifentanil-induced postoperative hyperalgesia and decreases spinal tyrosine phosphorylation of N-methyl-d-aspartate receptor 2B subunit. Brain Res Bull. 2012;87(4–5):427–31.CrossRefGoogle Scholar
  25. 25.
    Belgrade M, Hall S. Dexmedetomidine infusion for the management of opioid-induced hyperalgesia. Pain Med. 2010;11(12):1819–26.CrossRefGoogle Scholar
  26. 26.
    Weerink MAS, Struys M, Hannivoort LN, et al. Clinical pharmacokinetics and pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913.CrossRefGoogle Scholar
  27. 27.
    Peng K, Liu HY, Wu SR, et al. Effects of combining Dexmedetomidine and opioids for postoperative intravenous patient-controlled analgesia: asystematic review and meta-analysis. Clin J Pain. 2015;31(12):1097–104.CrossRefGoogle Scholar
  28. 28.
    Unlugenc H, Gunduz M, Guler T, et al. The effect of pre-anaesthetic administration of intravenous dexmedetomidine on postoperative pain in patients receiving patient-controlled morphine. Eur J Anaesthesiol. 2005;22(5):386–91.CrossRefGoogle Scholar
  29. 29.
    Blaudszun G, Lysakowski C, Elia N, et al. Effect of perioperative systemic alpha2 agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2012;116(6):1312–22.CrossRefGoogle Scholar
  30. 30.
    Dyck JB, Maze M, Haack C, et al. The pharmacokinetics and hemodynamic effects of intravenous and intramuscular dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology. 1993;78(5):813–20.CrossRefGoogle Scholar
  31. 31.
    Guler G, Akin A, Tosun Z, et al. Single-dose dexmedetomidine attenuates airway and circulatory reflexes during extubation. Acta Anaesthesiol Scand. 2005;49(8):1088–91.CrossRefGoogle Scholar
  32. 32.
    Yun Y, Wang J, Tang RR, et al. Effects of an intraoperative Dexmedetomidine bolus on the postoperative blood pressure and pain subsequent to craniotomy for Supratentorial tumors. J Neurosurg Anesthesiol. 2017;29(3):211–8.CrossRefGoogle Scholar
  33. 33.
    Dholakia C, Beverstein G, Garren M, et al. The impact of perioperative dexmedetomidine infusion on postoperative narcotic use and duration of stay after laparoscopic bariatric surgery. J Gastrointest Surg. 2007;11(11):1556–9.CrossRefGoogle Scholar
  34. 34.
    Bakhamees HS, El-Halafawy YM, El-Kerdawy HM, et al. Effects of dexmedetomidine in morbidly obese patients undergoing laparoscopic gastric bypass. Middle East J Anaesthesiol. 2007;19(3):537–51.Google Scholar
  35. 35.
    Schnabel A, Meyer-Friessem CH, Reichl SU, et al. Is intraoperative dexmedetomidine a new option for postoperative pain treatment? A meta-analysis of randomized controlled trials. Pain. 2013;154(7):1140–9.CrossRefGoogle Scholar
  36. 36.
    Ranganathan P, Ritchie MK, Ellison MB, et al. A randomized control trial using intraoperative dexmedetomidine during roux-en-Y gastric bypass surgery to reduce postoperative pain and narcotic use. Surg Obes Relat Dis. 2019;15(4):588–94.CrossRefGoogle Scholar
  37. 37.
    Kim SH, Oh YJ, Park BW, et al. Effects of single-dose dexmedetomidine on the quality of recovery after modified radical mastectomy: a randomised controlled trial. Minerva Anestesiol. 2013;79(11):1248–58.Google Scholar
  38. 38.
    Lee SH, Lee CY, Lee JG, et al. Intraoperative Dexmedetomidine improves the quality of recovery and postoperative pulmonary function in patients undergoing video-assisted Thoracoscopic surgery: a CONSORT-prospective, randomized, controlled trial. Medicine (Baltimore). 2016;95(7):e2854.CrossRefGoogle Scholar
  39. 39.
    Ge DJ, Qi B, Tang G, et al. Intraoperative Dexmedetomidine promotes postoperative analgesia and recovery in patients after abdominal colectomy: a CONSORT-prospective, randomized, controlled clinical trial. Medicine (Baltimore). 2015;94(43):e1727.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyAmerican University of Beirut Medical CenterBeirutLebanon
  2. 2.Keserwan Medical CenterJouniehLebanon
  3. 3.Department of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
  4. 4.Department of SurgeryLebanese American UniversityBeirutLebanon

Personalised recommendations