Adipose Tissue Composition in Obesity and After Bariatric Surgery

  • Gian Franco AdamiEmail author
  • Federico Carbone
  • Fabrizio Montecucco
  • Giovanni Camerini
  • Renzo Cordera
Review Article


The adipose tissue is a complex organ that regulates food intake and energy expenditure as well as induces low-grade inflammation. This review deals with changes in the composition and activity of the adipose organ after bariatric surgery, focusing on epicardial and ectopic fat and on relationships between white and brown adipose tissues. Postoperative improvements of ectopic fat and epicardial fat size and composition account for the metabolic recovery and the decreased cardiovascular risk. Following Roux-en-Y gastric bypass or biliopancreatic diversion, a proportional increase in the size and activity of the metabolically active brown adipose tissue was observed, most likely related to the postoperative rearrangement of the entero-hormonal pattern with an increase of GLP-1 production: this aspect would promote the postoperative weight loss and maintenance of post-surgery benefits.


Obesity Epicardial fat Ectopic fat Brown adipose tissue Bariatric surgery 


Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent statement does not apply.

Conflict of Interest

The authors declare that there is no conflict of interest.


  1. 1.
    Li W, Richard D. Effects of bariatric surgery on energy homeostasis. Can J Diabetes. 2017;41(4):426–31.Google Scholar
  2. 2.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.Google Scholar
  3. 3.
    Cardoso L, Rodrigues D, Gomes L, et al. Short- and long-term mortality after bariatric surgery: a systematic review and meta-analysis. Diabetes Obes Metab. 2017;19(9):1223–32.Google Scholar
  4. 4.
    Flegal KM, Kit BK, Orpana H, et al. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71–82.Google Scholar
  5. 5.
    Iyengar NM, Gucalp A, Dannenberg AJ, et al. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270–6.Google Scholar
  6. 6.
    Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.Google Scholar
  7. 7.
    Sjostrom L. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int J Obes. 2008;32(Suppl 7):S93–7.Google Scholar
  8. 8.
    Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37.Google Scholar
  9. 9.
    Zanchi D, Depoorter A, Egloff L, et al. The impact of gut hormones on the neural circuit of appetite and satiety: a systematic review. Neurosci Biobehav Rev. 2017;80:457–75.Google Scholar
  10. 10.
    Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 2016;158:52–62.Google Scholar
  11. 11.
    Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:71.Google Scholar
  12. 12.
    Cinti S. Adipose organ development and remodeling. Compr Physiol. 2018;8(4):1357–431.Google Scholar
  13. 13.
    Henry BA, Clarke IJ. Adipose tissue hormones and the regulation of food intake. J Neuroendocrinol. 2008;20(6):842–9.Google Scholar
  14. 14.
    Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10(3):207–15.Google Scholar
  15. 15.
    Kuda O, Rossmeisl M, Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol Asp Med. 2018;64:147–60.Google Scholar
  16. 16.
    Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome--an allostatic perspective. Biochim Biophys Acta. 2010;1801(3):338–49.Google Scholar
  17. 17.
    Liberale L, Dallegri F, Montecucco F, et al. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117(1):7–18.Google Scholar
  18. 18.
    Thomas D, Apovian C. Macrophage functions in lean and obese adipose tissue. Metabolism. 2017;72:120–43.Google Scholar
  19. 19.
    Blaszczak AM, Wright VP, Anandani K, et al. Loss of antigen presentation in adipose tissue macrophages or in adipocytes, but not both, improves glucose metabolism. J Immunol. 2019;202(8):2451–9.Google Scholar
  20. 20.
    Engin A. Diet-induced obesity and the mechanism of leptin resistance. Adv Exp Med Biol. 2017;960:381–97.Google Scholar
  21. 21.
    White U, Ravussin E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia. 2019;62(1):17–23.Google Scholar
  22. 22.
    Garcia MDC, Pazos P, Lima L, Dieguez C. Regulation of energy expenditure and brown/beige thermogenic activity by interleukins: new roles for old actors. Int J Mol Sci. 2018;19(9).Google Scholar
  23. 23.
    Shah RV, Allison MA, Lima JA, et al. Abdominal fat radiodensity, quantity and cardiometabolic risk: the multi-ethnic study of atherosclerosis. Nutr Metab Cardiovasc Dis. 2016;26(2):114–22.Google Scholar
  24. 24.
    Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017;127(1):43–54. Sanofi-Synthelabo, and has a provisional patent (no. 61721475) entitled “Biomarkers to improve prediction of heart failure risk,” filed by Baylor College of Medicine and RocheGoogle Scholar
  25. 25.
    Tian Z, Li Y, Li L, et al. Dose-response relationship between visceral fat index and untreated hypertension in Chinese rural population: the RuralDiab study. J Am Soc Hypertens. 2018;12(6):448–56 e1.Google Scholar
  26. 26.
    Burhans MS, Hagman DK, Kuzma JN, et al. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol. 2018;9(1):1–58.Google Scholar
  27. 27.
    Virtanen KA, van Marken Lichtenbelt WD, Nuutila P. Brown adipose tissue functions in humans. Biochim Biophys Acta. 2013;1831(5):1004–8.Google Scholar
  28. 28.
    Leitner BP, Huang S, Brychta RJ, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A. 2017;114(32):8649–54.Google Scholar
  29. 29.
    Lee Y, Willers C, Kunji ER, et al. Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin. Proc Natl Acad Sci U S A. 2015;112(22):6973–8.Google Scholar
  30. 30.
    Lopez M, Dieguez C, Nogueiras R. Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte. 2015;4(2):141–5.Google Scholar
  31. 31.
    Marlatt KL, Brown RE. Adipose Tissue: an update on recent findings. Curr Obes Rep. 2017;6(4):389–96.Google Scholar
  32. 32.
    Wang GX, Zhao XY, Lin JD. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol Metab. 2015;26(5):231–7.Google Scholar
  33. 33.
    Rodovalho S, Rachid B, De-Lima-Junior JC, et al. Impairment of body mass reduction-associated activation of brown/beige adipose tissue in patients with type 2 diabetes mellitus. Int J Obes. 2017;41(11):1662–8.Google Scholar
  34. 34.
    Montanari T, Poscic N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev. 2017;18(5):495–513.Google Scholar
  35. 35.
    Mynatt RL, Ravussin E. Secretin: an old hormone with a burning secret. Cell. 2018;175(6):1459–60.Google Scholar
  36. 36.
    Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 2014;1842(3):358–69.Google Scholar
  37. 37.
    Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25.Google Scholar
  38. 38.
    Rachid B, van de Sande-Lee S, Rodovalho S, et al. Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes. 2015;39(10):1515–22.Google Scholar
  39. 39.
    Dong M, Lin J, Lim W, et al. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med. 2018;12(2):130–8.Google Scholar
  40. 40.
    Selthofer-Relatic K, Bosnjak I. Myocardial fat as a part of cardiac visceral adipose tissue: physiological and pathophysiological view. J Endocrinol Investig. 2015;38(9):933–9.Google Scholar
  41. 41.
    Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71(20):2360–72.Google Scholar
  42. 42.
    Gonzalez N, Moreno-Villegas Z, Gonzalez-Bris A, et al. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol. 2017;16(1):44.Google Scholar
  43. 43.
    Matloch Z, Kotulak T, Haluzik M. The role of epicardial adipose tissue in heart disease. Physiol Res. 2016;65(1):23–32.Google Scholar
  44. 44.
    Siegel-Axel DI, Haring HU. Perivascular adipose tissue: an unique fat compartment relevant for the cardiometabolic syndrome. Rev Endocr Metab Disord. 2016;17(1):51–60.Google Scholar
  45. 45.
    Iacobellis G, Barbaro G. Epicardial adipose tissue feeding and overfeeding the heart. Nutrition. 2019;59:1–6.Google Scholar
  46. 46.
    Watanabe T, Watanabe-Kominato K, Takahashi Y, et al. Adipose tissue-derived omentin-1 function and regulation. Compr Physiol. 2017;7(3):765–81.Google Scholar
  47. 47.
    Echavarria-Pinto M, Hernando L, Alfonso F. From the epicardial adipose tissue to vulnerable coronary plaques. World J Cardiol. 2013;5(4):68–74.Google Scholar
  48. 48.
    Patel VB, Shah S, Verma S, et al. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22(6):889–902.Google Scholar
  49. 49.
    Gaborit B, Sengenes C, Ancel P, et al. Role of epicardial adipose tissue in health and disease: a matter of fat? Compr Physiol. 2017;7(3):1051–82.Google Scholar
  50. 50.
    Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart. 2018;104(20):1654–62.Google Scholar
  51. 51.
    Costa RM, Neves KB, Tostes RC, et al. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253.Google Scholar
  52. 52.
    Schafer K, Drosos I, Konstantinides S. Perivascular adipose tissue: epiphenomenon or local risk factor? Int J Obes. 2017;41(9):1311–23.Google Scholar
  53. 53.
    Liu J, Liu Z. Muscle insulin resistance and the inflamed microvasculature: fire from within. Int J Mol Sci. 2019;20(3)Google Scholar
  54. 54.
    Trouwborst I, Bowser SM, Goossens GH, et al. Ectopic fat accumulation in distinct insulin resistant phenotypes; targets for personalized nutritional interventions. Front Nutr. 2018;5:77.Google Scholar
  55. 55.
    Abranches MV, Oliveira FC, Conceicao LL, et al. Obesity and diabetes: the link between adipose tissue dysfunction and glucose homeostasis. Nutr Res Rev. 2015;28(2):121–32.Google Scholar
  56. 56.
    Schrauwen P, Schrauwen-Hinderling V, Hoeks J, et al. Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta. 2010;1801(3):266–71.Google Scholar
  57. 57.
    Laurens C, Moro C. Intramyocellular fat storage in metabolic diseases. Horm Mol Biol Clin Investig. 2016;26(1):43–52.Google Scholar
  58. 58.
    Loher H, Kreis R, Boesch C, et al. The flexibility of ectopic lipids. Int J Mol Sci. 2016;17(9)Google Scholar
  59. 59.
    Qureshi K, Abrams GA. Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2007;13(26):3540–53.Google Scholar
  60. 60.
    Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8.Google Scholar
  61. 61.
    Lambert JE, Ramos-Roman MA, Browning JD, et al. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(3):726–35.Google Scholar
  62. 62.
    Sabag A, Way KL, Keating SE, et al. Exercise and ectopic fat in type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 2017;43(3):195–210.Google Scholar
  63. 63.
    Gemmink A, Goodpaster BH, Schrauwen P, et al. Intramyocellular lipid droplets and insulin sensitivity, the human perspective. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1242–9.Google Scholar
  64. 64.
    Crescenzo R, Bianco F, Mazzoli A, et al. A possible link between hepatic mitochondrial dysfunction and diet-induced insulin resistance. Eur J Nutr. 2016;55(1):1–6.Google Scholar
  65. 65.
    Tumova J, Andel M, Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol Res. 2016;65(2):193–207.Google Scholar
  66. 66.
    Schrauwen-Hinderling VB, Hesselink MK, Schrauwen P, et al. Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring). 2006;14(3):357–67.Google Scholar
  67. 67.
    Saisho Y, Butler AE, Manesso E, et al. Beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36(1):111–7.Google Scholar
  68. 68.
    Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48(8):1600–6.Google Scholar
  69. 69.
    Adami GF, Parodi RC, Papadia F, et al. Magnetic resonance spectroscopy facilitates assessment of intramyocellular lipid changes: a preliminary short-term study following biliopancreatic diversion. Obes Surg. 2005;15(9):1233–7.Google Scholar
  70. 70.
    Gaborit B, Abdesselam I, Kober F, et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes. 2015;39(3):480–7.Google Scholar
  71. 71.
    Singh RG, Yoon HD, Poppitt SD, et al. Ectopic fat accumulation in the pancreas and its biomarkers: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2017;33(8)Google Scholar
  72. 72.
    Garcia TS, Rech TH, Leitao CB. Pancreatic size and fat content in diabetes: a systematic review and meta-analysis of imaging studies. PLoS One. 2017;12(7):e0180911.Google Scholar
  73. 73.
    Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142(4):711–25 e6.Google Scholar
  74. 74.
    Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004;5(4):219–26.Google Scholar
  75. 75.
    Camastra S, Vitali A, Anselmino M, et al. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci Rep. 2017;7(1):9007.Google Scholar
  76. 76.
    Gaborit B, Jacquier A, Kober F, et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012;60(15):1381–9.Google Scholar
  77. 77.
    Lindenmeyer CC, McCullough AJ. The natural history of nonalcoholic fatty liver disease-an evolving view. Clin Liver Dis. 2018;22(1):11–21.Google Scholar
  78. 78.
    Mota M, Banini BA, Cazanave SC, et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–61.Google Scholar
  79. 79.
    Wu FZ, Huang YL, Wu CC, et al. Differential effects of bariatric surgery versus exercise on excessive visceral fat deposits. Medicine (Baltimore). 2016;95(5):e2616.Google Scholar
  80. 80.
    van Schinkel LD, Sleddering MA, Lips MA, et al. Effects of bariatric surgery on pericardial ectopic fat depositions and cardiovascular function. Clin Endocrinol. 2014;81(5):689–95.Google Scholar
  81. 81.
    Foppa M, Pond KK, Jones DB, et al. Subcutaneous fat thickness, but not epicardial fat thickness, parallels weight reduction three months after bariatric surgery: a cardiac magnetic resonance study. Int J Cardiol. 2013;168(4):4532–3.Google Scholar
  82. 82.
    Rabkin SW, Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16(5):406–15.Google Scholar
  83. 83.
    Rodriguez Flores M, Aguilar Salinas C, Piche ME, et al. Effect of bariatric surgery on heart failure. Expert Rev Cardiovasc Ther. 2017;15(8):567–79.Google Scholar
  84. 84.
    Vasques AC, Pareja JC, Souza JR, et al. Epicardial and pericardial fat in type 2 diabetes: favourable effects of biliopancreatic diversion. Obes Surg. 2015;25(3):477–85.Google Scholar
  85. 85.
    Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.Google Scholar
  86. 86.
    Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism. 2019;92:82–97.Google Scholar
  87. 87.
    Popadic Gacesa J, Schick F, Machann J, et al. Intramyocellular lipids and their dynamics assessed by (1) H magnetic resonance spectroscopy. Clin Physiol Funct Imaging. 2017;37(6):558–66.Google Scholar
  88. 88.
    Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 2002;51(1):144–51.Google Scholar
  89. 89.
    Lima MM, Pareja JC, Alegre SM, et al. Acute effect of roux-en-y gastric bypass on whole-body insulin sensitivity: a study with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(8):3871–5.Google Scholar
  90. 90.
    Dunn JP, Abumrad NN, Breitman I, et al. Hepatic and peripheral insulin sensitivity and diabetes remission at 1 month after roux-en-Y gastric bypass surgery in patients randomized to omentectomy. Diabetes Care. 2012;35(1):137–42.Google Scholar
  91. 91.
    Hui SCN, Wong SKH, Ai Q, et al. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: evaluation with MRI. Eur Radiol. 2019;29(2):849–56.Google Scholar
  92. 92.
    Dadson P, Hannukainen JC, Din MU, et al. Brown adipose tissue lipid metabolism in morbid obesity: effect of bariatric surgery-induced weight loss. Diabetes Obes Metab. 2018;20(5):1280–8.Google Scholar
  93. 93.
    Vijgen GH, Bouvy ND, Teule GJ, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97(7):E1229–33.Google Scholar
  94. 94.
    Jahansouz C, Xu H, Hertzel AV, et al. Partitioning of adipose lipid metabolism by altered expression and function of PPAR isoforms after bariatric surgery. Int J Obes. 2018;42(2):139–46.Google Scholar
  95. 95.
    Wan Y, Bao X, Huang J, et al. Novel GLP-1 analog supaglutide reduces HFD-induced obesity associated with increased Ucp-1 in white adipose tissue in mice. Front Physiol. 2017;8:294.Google Scholar
  96. 96.
    Krieger JP, Santos da Conceicao EP, Sanchez-Watts G, et al. Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats. Am J Physiol Regul Integr Comp Physiol. 2018;315(4):R708–R20.Google Scholar
  97. 97.
    Xu F, Lin B, Zheng X, et al. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia. 2016;59(5):1059–69.Google Scholar
  98. 98.
    Chen Y, Yang J, Nie X, et al. Effects of bariatric surgery on change of Brown adipocyte tissue and energy metabolism in obese mice. Obes Surg. 2018;28(3):820–30.Google Scholar
  99. 99.
    de Cleva R, Mota FC, Gadducci AV, et al. Resting metabolic rate and weight loss after bariatric surgery. Surg Obes Relat Dis. 2018;14(6):803–7.Google Scholar
  100. 100.
    Abegg K, Corteville C, Bueter M, et al. Alterations in energy expenditure in roux-en-Y gastric bypass rats persist at thermoneutrality. Int J Obes. 2016;40(8):1215–21.Google Scholar
  101. 101.
    Ter Horst KW, van Galen KA, Gilijamse PW, et al. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans. Int J Obes. 2017;41(8):1288–94.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of GenovaGenovaItaly
  2. 2.IRCCS, Azienda Ospedale-Universitaria San MartinoGenoaItaly
  3. 3.Department of SurgeryUniversity of GenovaGenoaItaly

Personalised recommendations