Obesity Surgery

, Volume 19, Issue 5, pp 655–660 | Cite as

Rat Models for Bariatric Surgery and Surgery for Type 2 Diabetes Mellitus

  • Sheetal Bharat Mistry
  • Juan J. Omana
  • Subhash KiniEmail author


Type 2 diabetes mellitus being one of the most prevalent diseases in the world has led to a variety of research using animal models. This review focuses on various rat models to study the effect that surgical procedures have on type 2 diabetes mellitus and obesity. Rat models can be classified as Obese Diabetic, Non-Obese Diabetic, Obese Non-Diabetic, and Non-Obese Non-Diabetic. Here, we have discussed the particular characteristics of each rat so that it can provide the appropriate model to study different pathological processes involve in type 2 Diabetes and obesity.


Rat models Bariatric surgery Type 2 diabetes mellitus Obesity Insulin resistance Hyperglycemia Weight loss Zucker diabetic fatty (ZDF) Spontaneously hypertensive rat/National Institute of Health corpulent (SHR/N-cp) James C. Russell/LA corpulent (JCR/LA-cp) Otsuka Long–Evans Tokushima Fatty (OLETF) Goto–Kakizaki (GK) Cohen rat Torri rat Wistar rat Sprague–Dawley rat Zucker fatty (ZF) 


  1. 1.
    Pories WJ, Swanson MS, Macdonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995;222(3):339–50.CrossRefGoogle Scholar
  2. 2.
    Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003;238(4):467–84.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surgery 1996;119(3):261–8.CrossRefGoogle Scholar
  4. 4.
    Etgen GJ, Oldham BA. Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 2000;49(5):684–8.CrossRefGoogle Scholar
  5. 5.
    Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998;47(3):358–64.CrossRefGoogle Scholar
  6. 6.
    Corsetti JP, Sparks JD, Peterson RG, et al. Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis 2000;148(2):231–41.CrossRefGoogle Scholar
  7. 7.
    Rubino F, Zizzari P, Tomasetto C, et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology 2005;146(4):1745–51.CrossRefGoogle Scholar
  8. 8.
    Pereferrer FS, Gonzalez MH, Rovira AF, et al. Influence of sleeve gastrectomy on several experimental models of obesity: metabolic and hormonal implications. Obes Surg 2008;18(1):97–108.CrossRefGoogle Scholar
  9. 9.
    Baly DL, Zarnowski MJ, Carswell N, et al. Insulin resistant glucose transport activity in adipose cells from the SHR/N-corpulent rat. J Nutr 1989;119(4):628–32.CrossRefGoogle Scholar
  10. 10.
    Velasque MT, Bhathena SJ, Hansen CT. Leptin and its relation to obesity and insulin in the SHR/N-corpulent rat, a model of type II diabetes mellitus. Int J Exp Diabetes Res 2001;2(3):217–23.CrossRefGoogle Scholar
  11. 11.
    Amy RM, Dolphin PJ, Pederson RA, et al. Atherogenesis in two strains of obese rats. The fatty Zucker and LA/N-corpulent. Atherosclerosis 1988;69(2–3):199–209.CrossRefGoogle Scholar
  12. 12.
    Russell JC, Graham S, Hameed M. Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 1994;43(5):538–43.CrossRefGoogle Scholar
  13. 13.
    Clark TA, Pierce GN. Cardiovascular complications of non-insulin-dependent diabetes: the JCR:LA-cp rat. J Pharmacol Toxicol Methods 2000;43(1):1–10.CrossRefGoogle Scholar
  14. 14.
    Kawano K, Hirashima T, Mori S, et al. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 1994;24(Suppl):S317–S320.CrossRefGoogle Scholar
  15. 15.
    Zhu M, Noma Y, Mizuno A, et al. Poor capacity for proliferation of pancreatic beta-cells in Otsuka–Long–Evans–Tokushima Fatty rat: a model of spontaneous NIDDM. Diabetes 1996;45(7):941–6.CrossRefGoogle Scholar
  16. 16.
    Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 1976;119(1):85–90.CrossRefGoogle Scholar
  17. 17.
    Portha B, Giroix MH, Serradas P, et al. beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 2001;50(Suppl 1):S89–S93.CrossRefGoogle Scholar
  18. 18.
    Picarel-Blanchot F, Berthelier C, Bailbe D, et al. Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol 1996;271(4 Pt 1):E755–E762.PubMedGoogle Scholar
  19. 19.
    Miralles F, Portha B. Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes 2001;50(Suppl 1):S84–S88.CrossRefGoogle Scholar
  20. 20.
    Portha B. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm. Diabetes Metab Res Rev 2005;21(6):495–504.CrossRefGoogle Scholar
  21. 21.
    Pacheco D, de Luis DA, Romero A, et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto–Kakizaki rats. Am J Surg 2007;194(2):221–4.CrossRefGoogle Scholar
  22. 22.
    Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg 2008;247(6):968–75.CrossRefGoogle Scholar
  23. 23.
    Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery 2007;142(1):74–85.CrossRefGoogle Scholar
  24. 24.
    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006;244(5):741–9.CrossRefGoogle Scholar
  25. 25.
    Weksler-Zangen S, Yagil C, Zangen DH, et al. The newly inbred cohen diabetic rat: a nonobese normolipidemic genetic model of diet-induced type 2 diabetes expressing sex differences. Diabetes 2001;50(11):2521–9.CrossRefGoogle Scholar
  26. 26.
    Shinohara M, Masuyama T, Shoda T, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res 2000;1(2):89–100.CrossRefGoogle Scholar
  27. 27.
    Masuyama T, Fuse M, Yokoi N, et al. Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochem Biophys Res Commun 2003;304(1):196–206.CrossRefGoogle Scholar
  28. 28.
    Shinohara M, Oikawa T, Sato K, et al. Glucose intolerance and hyperlipidemia prior to diabetes onset in female Spontaneously Diabetic Torii (SDT) rats. Exp Diabesity Res 2004;5(4):253–6.CrossRefGoogle Scholar
  29. 29.
    Shimoike T, Yanase T, Umeda F, et al. Subcutaneous or visceral adipose tissue expression of the PPARgamma gene is not altered in the fatty (fa/fa) Zucker rat. Metabolism 1998;47(12):1494–8.CrossRefGoogle Scholar
  30. 30.
    Oana F, Takeda H, Hayakawa K, et al. Physiological difference between obese (fa/fa) Zucker rats and lean Zucker rats concerning adiponectin. Metabolism 2005;54(8):995–1001.CrossRefGoogle Scholar
  31. 31.
    Young EA, Taylor MM, Taylor MK, et al. Gastric stapling for morbid obesity: gastrointestinal response in a rat model. Am J Clin Nutr 1984;40(2):293–302.CrossRefGoogle Scholar
  32. 32.
    Xu Y, Ohinata K, Meguid MM, et al. Gastric bypass model in the obese rat to study metabolic mechanisms of weight loss. J Surg Res 2002;107(1):56–63.CrossRefGoogle Scholar
  33. 33.
    Endo Y, Ohta M, Kai S, et al. An obese rat model of bariatric surgery with gastric banding. Obes Surg 2007;17(6):815–9.CrossRefGoogle Scholar
  34. 34.
    Chen DC, Stern JS, Atkinson RL. Effects of ileal transposition on food intake, dietary preference, and weight gain in Zucker obese rats. Am J Physiol 1990;258(1 Pt 2):R269–R273.PubMedGoogle Scholar
  35. 35.
    Mason EE. Ileal [correction of ilial] transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg 1999;9(3):223–8.CrossRefGoogle Scholar
  36. 36.
    Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague–Dawley rats. Am J Physiol 1997;273(2 Pt 2):R725–R730.PubMedGoogle Scholar
  37. 37.
    Aprahamian CJ, Tekant G, Chen M, et al. A rat model of childhood diet-induced obesity: Roux-en-Y gastric bypass induced changes in metabolic parameters and gastric peptide ghrelin. Pediatr Surg Int 2007;23(7):653–7.CrossRefGoogle Scholar
  38. 38.
    Levin BE, Sullivan AC. Glucose-induced sympathetic activation in obesity-prone and resistant rats. Int J Obes 1989;13(2):235–46.PubMedGoogle Scholar
  39. 39.
    Meguid MM, Ramos EJ, Suzuki S, et al. A surgical rat model of human Roux-en-Y gastric bypass. J Gastrointest Surg 2004;8(5):621–30.CrossRefGoogle Scholar
  40. 40.
    Romanova IV, Ramos EJ, Xu Y, et al. Neurobiologic changes in the hypothalamus associated with weight loss after gastric bypass. J Am Coll Surg 2004;199(6):887–95.CrossRefGoogle Scholar
  41. 41.
    de Campos Martins MV, Peixoto AA, Schanaider A, et al. Glucose tolerance in the proximal versus the distal small bowel in wistar rats. Obes Surg 2008;19(2):202–6.CrossRefGoogle Scholar
  42. 42.
    Estadella D, Oyama LM, Damaso AR, et al. Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition 2004;20(2):218–24.CrossRefGoogle Scholar
  43. 43.
    Prada PO, Zecchin HG, Gasparetti AL, et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 2005;146(3):1576–87.CrossRefGoogle Scholar
  44. 44.
    Monteiro MP, Monteiro JD, Aguas AP, et al. A rat model of restrictive bariatric surgery with gastric banding. Obes Surg 2006;16(1):48–51.CrossRefGoogle Scholar
  45. 45.
    le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006;243(1):108–14.CrossRefGoogle Scholar
  46. 46.
    Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004;239(1):1–11.CrossRefGoogle Scholar
  47. 47.
    Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes Surg 2004;14(6):840–8.CrossRefGoogle Scholar
  48. 48.
    Patriti A, Facchiano E, Donini A. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004;240(2):388–9.CrossRefGoogle Scholar
  49. 49.
    Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 2004;89(6):2608–15.CrossRefGoogle Scholar
  50. 50.
    Valverde I, Puente J, Martin-Duce A, et al. Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects. Obes Surg 2005;15(3):387–97.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Sheetal Bharat Mistry
    • 1
  • Juan J. Omana
    • 2
  • Subhash Kini
    • 2
    Email author
  1. 1.606/B Kalpataru ClassicMaharashtraIndia
  2. 2.Department SurgeryMount Sinai School of MedicineNew YorkUSA

Personalised recommendations