Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of dual modification with annealing, heat moisture treatment and cross-linking on the physico-chemical, rheological and in vitro digestibility of underutilised kithul (Caryota urens) starch

  • 1 Accesses

Abstract

Kithul starch was subjected to annealing, heat moisture treatment, cross-linking, annealing after cross-linking and heat moisture treatment after cross-linking and its physico-chemical, functional properties and in vitro digestibility was studied. Moisture and amylose content significantly (p ≤ 0.05) reduced after modifications. Phosphorus content of kithul starch increased after cross-linking. X-ray diffraction pattern (type A) did not change and crystalline properties increased after modifications. HLS (cross-linked heat moisture treated kithul starch) showed highest relative crystallinity among the modified starches. Swelling index, solubility and light transmittance decreased after modifications. Single and dual modifications caused severe damages such as fissures and holes on the granular surface. Peak viscosity of ANS (annealed kithul starch), CLS (cross-linked kithul starch) and ALS (cross-linked annealed kithul starch) increased and HMS (heat moisture treated kithul starch) and HLS (cross-linked heat moisture treated kithul starch) decreased as compared with NS (native kithul starch). Modified kithul starches showed lower break down viscosity and higher set back and final viscosity. Rheological analysis showed higher hardness of modified starch gel (higher storage and loss modulus) as compared with NS gel. In vitro digestibility decreased after modifications and HLS showed higher resistant starch (RS). Gelatinization temperature varied after modifications. Enthalpy of gelatinization significantly increased after single and dual modifications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    C. Sudheesh, K.V. Sunooj, J. George, Int. J. Biol. Macromol. 125, 1084 (2019)

  2. 2.

    C. Sudheesh, K.V. Sunooj, S. Kumar, K.U. Anjali, B. Aaliya, M. Navaf, V.A. Sajeevkumar, J. George, Int. J. Food Sci. Technol. 2, 1 (2019). https://doi.org/10.1111/ijfs.14488

  3. 3.

    C. Sudheesh, K.V. Sunooj, J. George et al., J. Food Meas. Charact. 13, 1020–1030 (2019)

  4. 4.

    E. Young, J. Ma, J. Kim, D. Hun, S. Young, D. Kwon, J. Kim, Food Hydrocoll. 75, 33 (2018)

  5. 5.

    A.V. Singh, L.K. Nath, Int. J. Biol. Macromol. 50, 14 (2012)

  6. 6.

    S. Wang, F. Jin, J. Yu, Food Bioprocess Technol. 6, 3564 (2013)

  7. 7.

    H. Liu, X. Guo, W. Li, X. Wang, M. Lv, Q. Peng, M. Wang, Carbohydr. Polym. 132, 237 (2015)

  8. 8.

    C. Yook, U.-H. Pek, K.-H. Park, J. Food Sci. 58, 405 (1993)

  9. 9.

    S. Wattanachant, K. Muhammad, D. Mat Hashim, R.A. Rahman, Food Chem. 80, 463 (2003)

  10. 10.

    H.J. Chung, Q. Liu, R. Hoover, Carbohydr. Polym. 75, 436 (2009)

  11. 11.

    H. Molavi, S.M.A. Razavi, R. Farhoosh, Food Chem. 245, 385 (2018)

  12. 12.

    Z. Sui, A. Shah, J.N. Bemiller, Carbohydr. Polym. 86, 1461 (2011)

  13. 13.

    F. Shih, J. King, K.W. Daigle, H.J. An, Cereal Chem. 84, 527 (2007)

  14. 14.

    C.M.L. Franco, C.F. Ciacco, D.Q. Tavares, Starch/Starke 47, 223 (1995)

  15. 15.

    J. Singh, N. Singh, L. Kaur, J. Sci. Food Agric. 86, 1945 (2007)

  16. 16.

    AOAC, Official Methods of Analysis, 15th edn. (Association of Official Analytical Chemists, Washington, DC (1990)

  17. 17.

    I.H. Williams, F.D. Kuzina, Cereal Chem. 47, 411 (1970)

  18. 18.

    S.A.S. Criag, C.C. Maningat, P.A. Sieb, R.C. Hoseney, Cereal Chem. 66, 173 (1989)

  19. 19.

    C. Sudheesh, K.V. Sunooj, J. George, S. Kumar, Vikas, V.A. Sajeevkumar, Radiat. Phys. Chem. 162, 54 (2019)

  20. 20.

    H.N. Englyst, S.M. Kingman, J.H. Cummings, Eur. J. Clin. Nutr. 46, S33 (1992)

  21. 21.

    B.J. Hazarika, N. Sit, Carbohydr. Polym. 140, 269 (2016)

  22. 22.

    J. Liu, B. Wang, L. Lin, J. Zhang, W. Liu, J. Xie, Y. Ding, Food Hydrocoll. 36, 45 (2014)

  23. 23.

    L. Jayakody, R. Hoover, Q. Liu, E. Donner, Carbohydr. Polym. 76, 145 (2009)

  24. 24.

    M. Kaur, D.P.S. Oberoi, D.S. Sogi, B.S. Gill, J. Food Sci. Technol. 48, 460 (2011)

  25. 25.

    H. Lan, R. Hoover, L. Jayakody, Q. Liu, E. Donner, M. Baga, E.K. Asare, P. Hucl, R.N. Chibbar, Food Chem. 111, 663 (2008)

  26. 26.

    R. Carmona-Garcia, M.M. Sanchez-Rivera, G. Méndez-Montealvo, B. Garza-Montoya, L.A. Bello-Pérez, Carbohydr. Polym. 76, 117 (2009)

  27. 27.

    D. Deka, N. Sit, Int. J. Biol. Macromol. 92, 416 (2016)

  28. 28.

    H. Heo, Y.K. Lee, Y.H. Chang, Emir. J. Food Agric. 29, 463 (2017)

  29. 29.

    R. Hoover, H. Manuel, Food Res. Int. 29, 731 (1996)

  30. 30.

    S. Sukhija, S. Singh, C.S. Riar, Food Hydrocoll. 55, 56 (2016)

Download references

Acknowledgements

This study was supported by Pondicherry University.

Author information

Correspondence to Kappat Valiyapeediyekkal Sunooj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sudheesh, C., Sunooj, K.V., Alom, M. et al. Effect of dual modification with annealing, heat moisture treatment and cross-linking on the physico-chemical, rheological and in vitro digestibility of underutilised kithul (Caryota urens) starch. Food Measure (2020). https://doi.org/10.1007/s11694-020-00404-5

Download citation

Keywords

  • Kithul starch
  • Modifications
  • Morphology
  • Rheology
  • Starch hydrolysis