Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparison of phenolic substances and antioxidant activities in different varieties of chrysanthemum flower under simulated tea making conditions

  • 11 Accesses

Abstract

Chrysanthemum flowers are rich in phenolic substances. The chrysanthemum flower tea (CT) obtained by simulating the process of hot water brewing as the research object and 80% methanol aqueous extract (ME) as the controls to explore the composition of phenolic compounds and antioxidant capacities of five varieties of chrysanthemum flowers including Xueju, Taiju, Hangbaiju, Gongju and Jinzhanju. Nine phenolic compounds including p-hydroxybenzoic acid, catechin, vanillic acid, caffeic acid, syringic acid, epicatechin, p-coumaric acid, ferulic acid and sinapic acid were initially identified and quantified by using high-performance liquid chromatography with diode-array detection (HPLC-DAD). The content of catechin in Xueju, Taiju, Hangbaiju, Gongju and Jinzhanju was 45.6, 50.9, 51.8, 55.0 and 53.2 µg/g, respectively, which is the highest among the nine monomeric phenolic compounds. The Xueju variant had the largest total phenolic content of 123.7 mg gallic acid equivalent (GAE)/g and total flavonoid content of 92.5 catechin equivalent (CE)/g when compared to other cultivars, which was also consistent with the results from the HPLC-DAD measurements. After 15 min of simulated brewing, the DPPH radical eliminating ability of different varieties of CT was higher than that of the ME which corresponded with the FRAP results. The process of tea making improves the bioactive component and antioxidant activity of the chrysanthemum flower.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    B. Avula, Y.-H. Wang, M. Wang, C. Avonto, J. Zhao, T.J. Smillie, D. Rua, I.A. Khan, J. Pharm. Biomed. Anal. 88, 278–288 (2014)

  2. 2.

    Y. Cui, X. Wang, J. Xue, J. Liu, M. Xie, Nutr. Res. 34, 268–275, (2014)

  3. 3.

    M. Ukiya, T. Akihisa, H. Tokuda, H. Suzuki, T. Mukainaka, E. Ichiishi, K. Yasukawa, Y. Kasahara, H. Nishino, Cancer Lett. 177, 7–12, (2002)

  4. 4.

    H. Cui, M. Bai, Y. Sun, M.A.-S. Abdel-Samie, L. Lin, J. Funct. Foods. 48, 159–166, (2018)

  5. 5.

    W.S. Yang, D. Kim, Y.S. Yi, J.H. Kim, H.Y. Jeong, K. Hwang, J.H. Kim, J. Park, J.Y. Cho, J. Ethnopharmacol. 201, 82–90, (2017)

  6. 6.

    X. Zhang, J.-Z. Wu, Z.-X. Lin, Q.-J. Yuan, Y.-C. Li, J.-L. Liang, J.Y.-X. Zhan, Y.-L. Xie, Z.-R. Su, Y.-H. Liu, J. Ethnopharmacol. 234, 44–56, (2019)

  7. 7.

    D.X. Su, R.F. Zhang, C.L. Zhang, F. Huang, J. Xiao, Y.Y. Deng, Z.C. Wei, Y. Zhang, J.W. Chi, M.W. Zhang, Food Funct. 7, 508–515, (2016)

  8. 8.

    L. Feng, O. Eng Shi, S.F.Y. Li, Food Chem. 141, 1807–1813, (2013)

  9. 9.

    J. Yamamoto, M. Tadaishi, T. Yamane, Y. Oishi, M. Shimizu, K. Kobayashi-Hattori, Biosci. Biotechnol. Biochem. 79, 1147–1154, (2015)

  10. 10.

    L.X. Chen, D.J. Hu, S.C. Lam, L. Ge, D. Wu, J. Zhao, Z.R. Long, W.J. Yang, B. Fan, S.P. Li, J. Chromatogr. A 1428, 134–142 (2016)

  11. 11.

    L.Z. Lin, H. Jamesm, Food Chem. 120, 319–326, (2010)

  12. 12.

    P.-F. Yang, Y.-N. Yang, Z.-M. Feng, J.-S. Jiang, P.-C. Zhang, Bioorg. Chem. 82, 139–144, (2019)

  13. 13.

    T. Debnath, H.L. Jin, M. Abul Hasnat, Y. Kim, N.B. Samad, P.-J. Park, B.O. Lim, J. Food Biochem. 37, 440–448, (2013)

  14. 14.

    D. Su, N. Li, M. Chen, Y. Yuan, S. He, Y. Wang, Q. Wu, L. Li, H. Yang, Q. Zeng, Int. J. Food Sci. Technol. 53, 1631–1639, (2018)

  15. 15.

    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, J. Food Compos. Anal. 19, 669–675, (2006)

  16. 16.

    I.F.F. Benzie, Y.T. Szeto, J. Agric. Food Chem. 47, 633–636 (1999)

  17. 17.

    Q. Lyu, T.-H. Kuo, C. Sun, K. Chen, C.-C. Hsu, X. Li, Food Chem. 282, 9–17, (2019)

  18. 18.

    Y. Li, P. Yang, Y. Luo, B. Gao, J. Sun, W. Lu, J. Liu, P. Chen, Y. Zhang, L. Yu, Food Chem. 286, 8–16, (2019)

  19. 19.

    C.Y. Park, K.-Y. Lee, K. Gul, M.S. Rahman, A.-N. Kim, J. Chun, H.-J. Kim, S.-G. Choi, LWT Food Sci. Technol. 105, 149–155, (2019)

  20. 20.

    J.-Y. Yeh, L.-H. Hsieh, K.-T. Wu, C.-F. Tsai, Molecules 16, 3197–3211, (2011)

  21. 21.

    Y.-L. Lee, M.-T. Yen, J.-L. Mau, Food Chem. 104, 1–9, (2007)

  22. 22.

    T. Juntachote, E. Berghofer, Food Chem. 92, 193–202, (2005)

  23. 23.

    G.H. Xu, J.C. Chen, D.H. Liu, Y.H. Zhang, P. Jiang, X.Q. Ye, J. Food Sci. 73, C11–C18, (2008)

  24. 24.

    K. Higashi-Okai, K. Kamimoto, A. Yoshioka, Y. Okai, Phytother. Res. 16, 781–784, (2002)

  25. 25.

    S. Lim, A.-H. Choi, M. Kwon, E.-J. Joung, T. Shin, S.-G. Lee, N.-G. Kim, H.-R. Kim, Food Chem. 278, 178–184, (2019)

  26. 26.

    Y. Lee, K.T. Hwang, Sci. Hortic. 217, 189–196, (2017)

  27. 27.

    C.H. Lee, L. Yang, J.Z. Xu, S.Y.V. Yeung, Y. Huang, Z.Y. Chen, Food Chem. 90, 735–741 (2005)

  28. 28.

    M.D. Mira-Sánchez, J. Castillo-Sánchez, J.M. Morillas-Ruiz, Food Chem. 309, 125688, (2020)

  29. 29.

    D.A. Locatelli, M.A. Nazareno, C.M. Fusari, A.B. Camargo, Food Chem. 220, 219–224, (2017)

  30. 30.

    R. Romero-Díez, S. Rodríguez-Rojo, M.J. Cocero, C.M.M. Duarte, A.A. Matias, M.R. Bronze, Food Chem. 259, 188–195, (2018)

  31. 31.

    M.A.J. Alzahrani, C.O. Perera, Y. Hemar, Int. J. Food Sci. Technol. 53, 676–682 (2018)

  32. 32.

    W. Klunklin, G. Savage, Int. J. Food Sci. Technol. 53, 1962–1971 (2018)

  33. 33.

    J.L. Xu, J.-S. Shin, S.-K. Park, S. Kang, S.-C. Jeong, J.-K. Moon, Y. Choi, Food Res. Int. 100, 166–174 (2017)

  34. 34.

    D. Su, H. Liu, Q. Zeng, X. Qi, X. Yao, J. Zhang, Int. J. Food Sci. Technol. 52, 2471–2478, (2017)

Download references

Acknowledgments

This project supported by the National Natural Science Foundation of China (31601469), Natural Science Foundation of Guangdong Province (2017A030313205).

Author information

Correspondence to Dongxiao Su.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Xiong, X., Xu, Z. et al. Comparison of phenolic substances and antioxidant activities in different varieties of chrysanthemum flower under simulated tea making conditions. Food Measure (2020). https://doi.org/10.1007/s11694-020-00394-4

Download citation

Keywords

  • Phenolic
  • Flavonoid
  • Antioxidant
  • Chrysanthemum
  • HPLC-DAD