Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Catla catla roe protein isolate on textural and sensorial properties of surimi gel from Piaractus brachypomus

  • 36 Accesses

Abstract

Influence of protein isolate from catla (Catla catla) roe at different levels (0–8%, w/w) on the textural and sensorial properties of surimi gel from red-bellied pacu (Piaractus brachypomus) were studied. Protein isolate from catla roe (CRPI) was prepared and evaluated for trypsin inhibitory activity. Surimi gels added with CRPI were subjected to shear stress, texture profile analysis, color, SDS-PAGE, microstructure, water holding capacity and sensorial analysis. CRPI had trypsin inhibitory activity of 771.7 ± 12.57 unit/g. The CRPI effectively prevented the degradation of myosin heavy chain (MHC) in a concentration-dependent manner in both modori (65/90 °C) and kamaboko (40/90 °C) gels. Nevertheless, surimi gels incorporated with 6% CRPI (w/w) exhibited higher textural properties. This was witnessed by higher shear stress, hardness, springiness, cohesiveness, gumminess, chewiness, adhesiveness, fracture force, and water-holding capacity for both gels (P < 0.05). Furthermore, increasing CRPI levels (8%, w/w) showed a detrimental effect on gelation. The whiteness of modori and kamaboko gels slightly decreased with increasing CRPI levels (P < 0.05). The microstructure of modori and kamaboko gels added with 6% CRPI was more ordered and compact with fewer voids, demonstrating a preventive effect of CRPI on hydrolysis of myofibrillar proteins. Moreover, both gels added with 6% CRPI presented the higher texture and overall likeness scores than that of gels devoid of CRPI (P < 0.05). Therefore, CRPI could be used as an alternative additive to improve the textural properties of red-bellied pacu surimi by mitigating autolysis caused by endogenous proteinase or serve as a co-gelling agent or binder.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    A.E. Ghaly, V.V. Ramakrishnan, M.S. Brooks, S.M. Budge, D. Dave, J. Micro Biochem. Technol. 5, 107–129 (2013)

  2. 2.

    K. Balaswamy, T. Jyothirmayi, D.G. Rao, Int. J. Food Sci. Technol. 44, 293–296 (2007)

  3. 3.

    N.R. Galla, P.R. Pamidighantam, S. Akula, B. Karakala, Food Chem. 135, 1479–1484 (2012)

  4. 4.

    M. Chalamaiah, T. Jyothirmayi, K. Bhaskarachary, A. Vajreswari, R. Hemalatha, B.D. Kumar, Food Res. Int. 52, 221–229 (2013)

  5. 5.

    H.J. Lee, S.H. Park, I.S. Yoon, G.W. Lee, Y.J. Kim, J.S. Kim, M.S. Heu, J. Fish Aquat. Sci. 19, 12 (2016)

  6. 6.

    Z.E. Sikorski, The contents of proteins and other nitrogenous compounds in marine animals (Chapman and Hall, New York, 1994), pp. 6–12

  7. 7.

    J.H. Choi, P.J. Park, S.K. Kim, Fish. Sci. 68, 1367–1373 (2002)

  8. 8.

    S. Klomklao, S. Benjakul, H. Kishimura, Int. J. Food Sci. Technol. 49, 168–173 (2014)

  9. 9.

    T.G. Kudre, S. Benjakul, Food Bioprocess Technol. 7, 1570–1580 (2014)

  10. 10.

    T.G. Kudre, S. Benjakul, Int. J. Chem. Environ. Biol. Sci. 1, 91–101 (2013)

  11. 11.

    C. Alvarez, I. Couso, M. Tejada, J. Food Sci. 64, 633–637 (1999)

  12. 12.

    N. Van Phu, K. Morioka, Y. Itoh, J. Biol Sci. 10, 432–439 (2010)

  13. 13.

    S. Rawdkuen, S. Benjakul, Food Chem. 106, 1077–1084 (2008)

  14. 14.

    S. Rawdkuen, S. Benjakul, W. Visessanguan, T.C. Lanier, J. Food Process Pres. 31, 492–516 (2007)

  15. 15.

    W. Visessanguan, S. Benjakul, H. An, J. Food Sci. 65, 607–611 (2000)

  16. 16.

    J.C. Burgarella, T.C. Lanier, D.D. Hamann, M.C. Wu, J. Food Sci. 50, 1595–1597 (1985)

  17. 17.

    A. Jafarpour, H.A. Hajiduon, M.R. Aie, J. Food Process Technol. 3, 11 (2012)

  18. 18.

    L.R. Marquez-Alvarez, W. Torres-Arreola, V. Ocano-Higuera, B. Ramirez-Wong, E. Marquez-Rios, J. Chem. 14, 65 (2015)

  19. 19.

    S. Klomklao, S. Benjakul, H. Kishimura, K. Osako, B.K. Simpson, LWT 65, 122–127 (2016)

  20. 20.

    T.G. Kudre, S. Benjakul, Food Biophys. 8, 240–249 (2013)

  21. 21.

    AOAC, Official Methods of Analysis (Official Analytical Chemists International, Gaithersberg, 2000)

  22. 22.

    T.G. Kudre, S. Benjakul, J. Food Process Pres. 37, 977–986 (2013)

  23. 23.

    S. Benjakul, W. Visessanguan, C. Thongkaew, M. Tanaka, Food Res. Int. 36, 787–795 (2003)

  24. 24.

    O.H. Lowry, N.J. Rosebrough, L.A. Farr, R.J. Randall, J. Biol. Chem. 193, 265–275 (1951)

  25. 25.

    National Fisheries Institute, A manual of standard methods for measuring and specifying the properties of surimi (DC, Washington, 1991), pp. 6–27

  26. 26.

    U.K. Laemmli, Nature 227, 680–685 (1970)

  27. 27.

    A. Wasko, M. Kieliszek, Z. Targonski, Prep. Biochem. Biotechnol. 42(5), 476–488 (2012)

  28. 28.

    M.C. Meilgaard, G.V. Civille, B.T. Carr, Sensory Evaluation Techniques (CRC Press, Michigan, 2007)

  29. 29.

    A. Oujifard, S. Benjakul, M. Ahmad, J. Seyfabadi, LWT 47, 266 (2012)

  30. 30.

    M.J. Cao, K. Hara, K. Osatomi, K. Tachibana, T. Izumi, T. Ishihara, J. Food Sci. 64, 644–647 (1999)

  31. 31.

    S. Benjakul, W. Visessanguan, J. Tueksuban, Food Chem. 80, 535–544 (2003)

  32. 32.

    T. Yamashita, H. Araki, N. Seki, Fish. Sci. 62, 421–426 (1996)

  33. 33.

    S. Benjakul, W. Visessanguan, C. Chantarasuwan, LWT 37, 177–185 (2004)

  34. 34.

    S. Benjakul, W. Visessanguan, M. Tanaka, S. Ishizaki, R. Suthidham, O. Sungpech, J. Sci. Food Agric. 81, 102–108 (2001)

  35. 35.

    M.T. Morrissey, J.W. Wu, D. Lin, H. An, J. Food Sci. 58, 1050–1054 (1993)

  36. 36.

    S. Benjakul, S. Phatcharat, A. Tammatinna, W. Visessanguan, H. Kishimura, J. Food Sci. 73, 239–246 (2008)

  37. 37.

    S. Yarnpakdee, S. Benjakul, W. Visessanguan, K. Kijroongrojana, Food Hydrocoll. 23, 1779–1784 (2009)

  38. 38.

    A. Singh, S. Benjakul, J. Food Sci Technol. 54, 267–275 (2017)

  39. 39.

    S. Benjakul, W. Visessanguan, Food Res. Int. 36, 253–266 (2003)

  40. 40.

    S. Rawdkuen, S. Benjakul, W. Visessanguan, T.C. Lanier, Food Hydrocoll. 18, 259–270 (2004)

  41. 41.

    S. Chanarat, S. Benjakul, Food Chem. 136, 929–937 (2013)

Download references

Acknowledgments

The authors would like to express their sincere thanks to the Science and Engineering Research Board, Department of Science Technology, India (Grant No ECR/2015/000215) for financial support. We also thank the Director of CSIR-CFTRI, Mysuru, for encouragement and permission to publish this work.

Author information

Correspondence to Tanaji G. Kudre.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest regarding the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bharane, P.R., Bethi, C.M.S. & Kudre, T.G. Effect of Catla catla roe protein isolate on textural and sensorial properties of surimi gel from Piaractus brachypomus. Food Measure (2020). https://doi.org/10.1007/s11694-020-00389-1

Download citation

Keywords

  • Piaractus brachypomus
  • Surimi
  • Autolysis
  • Catla roe protein isolate
  • Inhibitors
  • Gel properties