Advertisement

Characteristics of volatile flavor components in stewed meat and meat broths prepared with repeatedly used broths containing star anise

  • Yan-xiu Qin
  • Dan-Dan Cai
  • Dan-ni Zhang
  • Yuan LiuEmail author
  • Ke-qiang LaiEmail author
Original Paper

Abstract

To investigate the effects of repeatedly used broth containing star anise on the volatile flavor compounds in meat broths and stewed meat, broth containing star anise was repeatedly used to cook pork loin for 1, 2, 3, 4, 5 and 7 times, respectively. Volatile flavor profiles and compounds in meat broths were determined by sensory evaluation and identified by solid-phase microextraction combined with gas chromatography-mass spectrometry. The sensory evaluation based on a triangle test elucidated significant differences on aroma between meat broths repeatedly used for 1 time and 3 times. Moreover, a total of 37 volatile compounds were identified in meat broths cooked with star anise and the main volatile compounds were anethole, eucalyptol, linalool, terpinen-4-ol, alpha-terpineol, cedrol. The relative contents of the volatile flavor compounds in meat broths decreased as the times for the broth being reused increased. After the meat broth containing star anise being repeatedly used for 3 times, the total amount of volatile compounds was only about 50% of the initial level, and therefore, an additional 40–50% of the initial amount of star anise was recommended to add into meat broth after the broth being used 2 times. The supplementation of star anise to the meat broth helped ensure the flavor consistency of the resulted stewed meat product.

Keywords

Star anise Meat broth Repeatedly cooked Volatile flavor components 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0401501) and The National Natural Science Foundation of China (Grant No. 31622042).

References

  1. 1.
    GB/T 23586-2009 Soy sauce and pot-roast meat products[S] (2009)Google Scholar
  2. 2.
    T.T. Peng, C.J. Zhang, F. Huang et al., Mod. Food Sci. Technol. 49, 255–266 (2016)Google Scholar
  3. 3.
    J. Qi, H.H. Wang, G.H. Zhou et al., Int. J. Food Prop. 20, S2579–S2595 (2018)CrossRefGoogle Scholar
  4. 4.
    H. Li, X. Li, C.H. Zhang et al., J. Sci. Food Agric. 96, 1618–1626 (2016)CrossRefGoogle Scholar
  5. 5.
    D.Y. Liu, S.J. Li, N. Wang et al., J. Food Sci. 82, 1076–1082 (2017)CrossRefGoogle Scholar
  6. 6.
    W. Nie, Z.H. Tu, J. Zhang et al., J. Food Saf. Qual. 8, 1987–1992 (2017)Google Scholar
  7. 7.
    L. Ke, H. Xue, X. Mei-juan et al., Mod. Food Sci. Technol. 294–301 (2017).Google Scholar
  8. 8.
    Y. Li, C. Li, H. Li et al., Int. J. Food Sci. Technol. 51, 359–369 (2016)CrossRefGoogle Scholar
  9. 9.
    X.N. Shi, H. Feng, L. Zhang et al., Mod. Food Sci. Technol. 257–265 (2017).Google Scholar
  10. 10.
    Z. Yang, H. Gong, Z.J. Shi et al., Food Science 38, 183–190 (2017)Google Scholar
  11. 11.
    Y. Liu, X.L. Xu, G.F. Ouyang et al., J. Food Sci. 71, S371–S377 (2006)CrossRefGoogle Scholar
  12. 12.
    G.W. Wang, W.T. Hu, B.K. Huang et al., J. Ethnopharmacol. 136, 10–20 (2011)CrossRefGoogle Scholar
  13. 13.
    W.B. Zhang, Y. Zhang, X.Y. Yuan et al., Trop. J. Pharm. Res. 14, 1879–1884 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Cai, X.Y. Guo, H.H. Liang et al., Int. J. Food Sci. Technol. 48, 2324–2330 (2013)Google Scholar
  15. 15.
    L.X. Sun, J.P. Chen, M.Y. Li et al., J. Food Process Eng. 37, 131–145 (2014)CrossRefGoogle Scholar
  16. 16.
    Sensory analysis - Methodology - Triangle test (ISO 4120:2004), European Standard (2007)Google Scholar
  17. 17.
    D. Xia, D.N. Zhang, S.T. Gao et al., J. Food Qual. 2017, 1–6 (2017)CrossRefGoogle Scholar
  18. 18.
    Y.Z. Feng, Y. Cai, X. Fu et al., Food Chem. 265, 274–280 (2018)CrossRefGoogle Scholar
  19. 19.
    M.B. Gholivand, M. Rahimi-Nasrabadi, H. Chalabi, Anal. Lett. 42, 1382–1397 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Zhao, M. Wang, J.C. Xie et al., Food Chem. 226, 51–60 (2017)CrossRefGoogle Scholar
  21. 21.
    D.S. Mottram, Food Chem. 62, 415–424 (1998)CrossRefGoogle Scholar
  22. 22.
    J. Qi, D.Y. Liu, G.H. Zhou et al., J. Food Sci. 82, 2031–2040 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Soohyun, K. Jinhyoung, S. Hyunjoo et al., Korean J. Food Sci. Anim. Resour. 23, 39–45 (2003)Google Scholar
  24. 24.
    J.M. Lorenzo, R. Dominguez, Flavour Fragr. J. 29, 240–248 (2014)CrossRefGoogle Scholar
  25. 25.
    M.L. Timon, A.I. Carrapiso, A. Jurado et al., J. Sci. Food Agric. 84, 825–831 (2004)CrossRefGoogle Scholar
  26. 26.
    J.C. Xie, B.G. Sun, F.P. Zheng et al., Food Chem. 109, 506–514 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Zhang, E. Karangwa, E. Duhoranimana et al., Flavour Fragr. J. 32, 470–483 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Gao, J.L. Li, L. Zhang et al., Food Sci. Technol. (Campinas) 35, 445–451 (2015)CrossRefGoogle Scholar
  29. 29.
    C. Thomas, F. Mercier, P. Tournayre et al., Food Chem. 139, 432–438 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Martin, M.L. Timon, M.J. Petron et al., Meat Sci. 54, 333–337 (2000)CrossRefGoogle Scholar
  31. 31.
    K.F. Degnes, H.F.N. Kvitvang, H. Haslene-Hox et al., Food Bioprocess Technol. 10, 1122–1130 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
  2. 2.Engineering Research Center of Food Thermal-Processing TechnologyShanghai Ocean UniversityShanghaiChina
  3. 3.Department of Food Science & Technology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations