Advertisement

A high-throughput system for screening high diacetyl-producing lactic acid bacteria in fermented milk in 96-well microplates

  • HuaiXiang Tian
  • BenJie Yu
  • LianZhong Ai
  • HaiYan Yu
  • Chen ChenEmail author
Original Paper
  • 13 Downloads

Abstract

Lactic acid bacteria play an important role in the food industry and can produce many aromatic compounds during the fermentation process, including diacetyl, an important compound with a buttery flavor. However, existing methods for screening strains that produce high levels of diacetyl are time-consuming and inefficient. An integrated strategy for high-throughput screening of diacetyl-producing strains was therefore developed in this study. This strategy uses 96-deep-well plates for microbial strain cultivation and milk fermentation and trichloroacetic acid for protein precipitation. A colorimetric method based on the reaction of diacetyl with O-phenylenediamine was then developed to determine the diacetyl concentrations in the wells. Good agreement was observed between high-throughput cultivation and traditional method, confirming that the deep-well microplates could replace beaker flasks to scale down cell cultivation and fermentation. The diacetyl concentrations measured with a microplate reader were comparable to those determined via gas chromatography (R2 = 0.9927) and ultraviolet spectrophotometry (R2 = 0.9943), and a high recovery level (94.88%) was obtained. Overall, this strategy increased the screening efficiency by 5- to 30-fold compared with traditional methods. Next, this strategy was used successfully to screen two strains, 1-16 (37.05 ± 1.32 mg/L) and CN-7 (32.35 ± 0.54 mg/L), and the diacetyl yields were verified in a 5-L reactor. Our findings suggest that this newly developed high-throughput strategy can accelerate screening efficiency at a low cost and with a high level of accuracy. This strategy has great potential for targeted screening of strains that produce high levels of diacetyl in fermented milk.

Keywords

High-throughput screening 96-well microplates Diacetyl Microplate reader 

Notes

Acknowledgements

This work was sponsored by the “Shu Guang” Project (No. 16SG50), which was supported by the Shanghai Municipal Education Commission, Shanghai Education Development Foundation, and Shanghai Rising-Star Program (No. 17QB1404200), “Lvyangjinfeng” Outstanding Doctor Project (No. yzlyjfjh2016YB107).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    G.M. Chiocchetti, C. Jadánpiedra, V. Monedero, M. Zúñiga, D. Vélez, V. Devesa, Crit. Rev. Food Sci. Nutr. 16, 1–12 (2018)Google Scholar
  2. 2.
    R. Coda, C.G. Rizzello, A. Trani, M. Gobbetti, Food Microbiol. 28, 526–536 (2011)CrossRefGoogle Scholar
  3. 3.
    J. Salomskiene, D. Jonkuviene, I. Macioniene, A. Abraitiene, J. Zeime, J. Repeckiene, L. Vaiciulyte-Funk, Eur. Food Res. Technol. 245, 1–11 (2019)CrossRefGoogle Scholar
  4. 4.
    J. Reis, T.A. Paula, N.S. Casarotti, L.B.A. Penna, Food Eng. Rev. 4, 124–140 (2012)CrossRefGoogle Scholar
  5. 5.
    P. Rattanachaikunsopon, P. Phumkhachorn, Ann. Biol. Res. 1, 218–228 (2010)Google Scholar
  6. 6.
    W. Hao, F. Ji, J. Wang, Y. Wang, Y. Zhang, Y. Bao, Process Biochem. 58, 69–77 (2017).  https://doi.org/10.1016/j.procbio.2017.04.015 CrossRefGoogle Scholar
  7. 7.
    J.W. Martyny, M.V. Van Dyke, S. Arbuckle, M. Towle, C.S. Rose, J. Occup. Environ. Hygiene 5, 679–688 (2008)CrossRefGoogle Scholar
  8. 8.
    R.G. Seals, E.G. Hammond, J. Am. Oil Chem. Soc. 43, 401–402 (1966)CrossRefGoogle Scholar
  9. 9.
    M.W. Rigler, W.E. Longo, Int. J. Occup. Environ. Health 16, 291–302 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Whittaker, J.J. Clarke, R.H.C. San, T.H. Begley, V.C. Dunkel, Food Chem. Toxicol. 46, 2928–2933 (2008)CrossRefGoogle Scholar
  11. 11.
    C. Monnet, F. Aymes, G. Corrieu, Appl. Environ. Microbiol. 66, 5518–5520 (2000).  https://doi.org/10.1128/aem.66.12.5518-5520.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    S. Pirsa, F.M. Nejad, Sensor Rev. 37, 155–164 (2017).  https://doi.org/10.1108/sr-10-2016-0217 CrossRefGoogle Scholar
  13. 13.
    T. Guo, J. Kong, L. Zhang, C. Zhang, S. Hu, PLoS ONE 7, e36296 (2012).  https://doi.org/10.1371/journal.pone.0036296 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    J.B. Hallagan, Toxicology 388, 1–6 (2017).  https://doi.org/10.1016/j.tox.2017.05.010 CrossRefPubMedGoogle Scholar
  15. 15.
    J. Wang, J. Wang, K. Yang, M. Liu, J. Zhang, X. Wei, M. Fan, Ann. Microbiol. 68(12), 803–813 (2018).  https://doi.org/10.1007/s13213-018-1386-3 CrossRefGoogle Scholar
  16. 16.
    X. Fan, H. Wu, G. Li, H. Yuan, H. Zhang, Y. Li, X. Xie, N. Chen, PLoS ONE 12, e0176545 (2017).  https://doi.org/10.1371/journal.pone.0176545 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    M.I. Rincon-Delgadillo, A. Lopez-Hernandez, I. Wijaya, S.A. Rankin, J. Dairy Sci. 95, 1128–1139 (2012)CrossRefGoogle Scholar
  18. 18.
    T.W. Keenan, D.D. Bills, J. Dairy Sci. 51, 1561–1567 (1968)CrossRefGoogle Scholar
  19. 19.
    J. Nadal, G. Rico, M.J. Perez-Martinez, V. Yebra, Monedero. J. Ind. Microbiol. Biotechnol. 36, 1233–1237 (2009).  https://doi.org/10.1007/s10295-009-0617-9 CrossRefPubMedGoogle Scholar
  20. 20.
    R. Lo, V.T.T. Ho, N. Bansal, M.S. Turner, Int. J. Food Microbiol. 265, 30–39 (2018).  https://doi.org/10.1016/j.ijfoodmicro.2017.10.029 CrossRefPubMedGoogle Scholar
  21. 21.
    J. Liu, S.H.J. Chan, T. Brock-Nannestad, J. Chen, S.Y. Lee, C. Solem, P.R. Jensen, Metab. Eng. 36, 57–67 (2016).  https://doi.org/10.1016/j.ymben.2016.02.008 CrossRefPubMedGoogle Scholar
  22. 22.
    L. Zhao, Y. Bao, J. Wang, B. Liu, World J. Microbiol. Biotechnol. 25, 57–64 (2008).  https://doi.org/10.1007/s11274-008-9862-8 CrossRefGoogle Scholar
  23. 23.
    C. Monnet, G. Corrieu, Food Microbiol. 24, 601–606 (2007).  https://doi.org/10.1016/j.fm.2007.01.004 CrossRefPubMedGoogle Scholar
  24. 24.
    X. Gao, N. Xu, S. Li, L. Liu, PLoS ONE 9, e89854 (2014).  https://doi.org/10.1371/journal.pone.0089854 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    M.I. Pastink, S. Sieuwerts, F.A.M. de Bok, P.W.M. Janssen, B. Teusink, J.E.T. van Hylckama-Vlieg, J. Hugenholtz, Int. Dairy J. 18, 781–789 (2008).  https://doi.org/10.1016/j.idairyj.2007.07.006 CrossRefGoogle Scholar
  26. 26.
    G.H. Peralta, I.V. Wolf, M.C. Perotti, C.V. Bergamini, E.R. Hynes, Dairy Sci. Technol. 96, 603–621 (2016).  https://doi.org/10.1007/s13594-016-0291-4 CrossRefGoogle Scholar
  27. 27.
    A. Lorusso, R. Coda, M. Montemurro, C.G. Rizzello, Foods 7, 51 (2018)CrossRefGoogle Scholar
  28. 28.
    Yang J, Qili MI, Xiong W, Zhu R, Lou M, Yao J, Luo Y (2018) Acta Agric. Zhejiangensis 30(4):661–665Google Scholar
  29. 29.
    K.S. Vinusha, K. Deepika, T.S. Johnson, G.K. Agrawal, R. Rakwal, Biochem. Biophys. Rep. 14, 140–148 (2018)PubMedPubMedCentralGoogle Scholar
  30. 30.
    H.H. Lee, K.T. Lee, J.A. Shin, Food Sci. Biotechnol. 26, 893–899 (2017).  https://doi.org/10.1007/s10068-017-0124-0 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    A. De Prisco, H.J.F. van Valenberg, V. Fogliano, G. Mauriello, Food Bioprocess Technol. 10, 1767–1777 (2017).  https://doi.org/10.1007/s11947-017-1946-8 CrossRefGoogle Scholar
  32. 32.
    H. Antypas, M. Veses-Garcia, E. Weibull, H. Andersson-Svahn, A. Richter-Dahlfors, Lab Chip 18, 1767–1777 (2018).  https://doi.org/10.1039/c8lc00190a CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    F. Paye, H.B. Rose, J.M. Robbins, D.A. Yunda, S. Cho, A.S. Bommarius, Anal. Biochem. 549, 80–90 (2018).  https://doi.org/10.1016/j.ab.2018.03.009 CrossRefPubMedGoogle Scholar
  34. 34.
    J. Tan, J. Chu, Y. Hao, Y. Guo, Y. Zhuang, S. Zhang, Appl. Biochem. Biotechnol. 169, 1683–1695 (2013).  https://doi.org/10.1007/s12010-013-0095-4 CrossRefPubMedGoogle Scholar
  35. 35.
    X. Lv, J. Song, B. Yu, H. Liu, C. Li, Y. Zhuang, Y. Wang, Bioprocess Biosyst. Eng. 39, 1737–1747 (2016).  https://doi.org/10.1007/s00449-016-1649-y CrossRefPubMedGoogle Scholar
  36. 36.
    N. Liaud, D. Navarro, N. Vidal, J.C. Sigoillot, S. Raouche, MethodsX 1, 254–257 (2014).  https://doi.org/10.1016/j.mex.2014.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    J.C. Buijten, B. Holm, J. Autom. Chem. 1, 91 (2008).  https://doi.org/10.1155/s1463924679000286 CrossRefGoogle Scholar
  38. 38.
    E.J. Guerra-Hernández, R.G. Estepa, I.R. Rivas, Food Chem. 53, 315–319 (1995)CrossRefGoogle Scholar
  39. 39.
    H. Tian, Y. Shen, H. Yu, Y. He, C. Chen, J. Food Sci. 82, 1693–1701 (2017).  https://doi.org/10.1111/1750-3841.13779 CrossRefPubMedGoogle Scholar
  40. 40.
    T.A. Chew, J.M. Smith, J. Clin. Microbiol. 30, 3028–3029 (1992).  https://doi.org/10.1016/0168-1656(92)90017-4 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Z.Y. Lu, X.J. Guo, H. Li, Z.Z. Huang, K.F. Lin, Y.D. Liu, Int. J. Mol. Sci. 16, 11834–11848 (2015).  https://doi.org/10.3390/ijms160611834 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    X. Lv, J. Song, B. Yu, H. Liu, C. Li, Y. Zhuang, Y. Wang, Bioprocess Biosyst. Eng. 39, 1–11 (2016).  https://doi.org/10.1007/s00449-016-1649-y CrossRefGoogle Scholar
  43. 43.
    S.J. Haig, N. Kotlarz, J.J. Lipuma, L. Raskin, J. Mbio. 9, e02354 (2018)Google Scholar
  44. 44.
    H. Tian, X. Zhou, C. Chen, Y. He, H. Yu, X. Zheng, Korean J. Food Sci. Anim. Resour. 37, 847–854 (2017)PubMedPubMedCentralGoogle Scholar
  45. 45.
    M.T. Stauffer, L.J. Hunter, S.K. Troncone, Spectrosc. Lett. 40(3), 429–437 (2007)CrossRefGoogle Scholar
  46. 46.
    T. Jun, C. Ju, H. Yuyou, G. Yuanxin, Z. Yingping, Z. Siliang, Appl. Biochem. Biotechnol. 169, 1683–1695 (2013)CrossRefGoogle Scholar
  47. 47.
    K. Tobias, B.O. Christian, K. Barbara, P. Kristjan, J. Biochem. Biophys. Methods 57, 247–251 (2003)CrossRefGoogle Scholar
  48. 48.
    J. Pejin, D. Cvetkovic, M. Serbia, M. Djurendic, J. Am. Soc. Brew. Chem. 64, 52–60 (2006)Google Scholar
  49. 49.
    L. Marri, A.M. Jansson, C.E. Christensen, O. Hindsgaul, Anal. Biochem. 535, 12 (2017)CrossRefGoogle Scholar
  50. 50.
    V. Macciola, G. Candela, A.D. Leonardis, Food Control 19, 873–878 (2008)CrossRefGoogle Scholar
  51. 51.
    L. Lo Verso, M. Lessard, G. Talbot, B. Fernandez, I. Hiss. Probiot. Antimicrob. Proteins 10, 299–312 (2018).  https://doi.org/10.1007/s12602-017-9309-3 CrossRefGoogle Scholar
  52. 52.
    D. Ishlimova, Z. Urshev, Biotechnol. Biotechnol. Equip. 27, 3966–3971 (2013).  https://doi.org/10.5504/bbeq.2013.0043 CrossRefGoogle Scholar
  53. 53.
    D. Wang, W.J. Liu, Y. Ren, L.L. De, D.L. Zhang, Y.R. Yang, Q.H. Bao, H.P. Zhang, B.L.G. Menghe, Korean J. Food Sci. Anim. Resour. 36, 499–507 (2016).  https://doi.org/10.5851/kosfa.2016.36.4.499 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Y.H. Cho, S.M. Hong, C.H. Kim, Korean J. Food Sci. Anim. Resour. 33, 75–82 (2013).  https://doi.org/10.5851/kosfa.2013.33.1.75 CrossRefGoogle Scholar
  55. 55.
    B.D. Jyoti, A.K. Suresh, K.V. Venkatesh, World J. Microbiol. Biotechnol. 19, 509–514 (2003)CrossRefGoogle Scholar
  56. 56.
    F. Vilchez, C. Petit, R. Marczak, J. Basic Microbiol. 30, 609–615 (2010)CrossRefGoogle Scholar
  57. 57.
    J.R. Tagg, A.S. Dajani, L.W. Wannamaker, Microbiol. Rev. 59, 171–200 (1995)PubMedPubMedCentralGoogle Scholar
  58. 58.
    R.W.G. Caldow, P.A. Racey, J. Appl. Ecol. 37, 6–12 (2010).  https://doi.org/10.1046/j.1365-2664.2000.00559.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyShanghai Institute of TechnologyShanghaiChina
  2. 2.Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  3. 3.Shanghai Research Institute of Fragrance & Food FlavorShanghaiChina
  4. 4.Yangzhou University Healthy Source Dairy Co., LtdYangzhouChina

Personalised recommendations