Advertisement

Effect of sorghum sourdough and nabag (zizyphus spina-christi) pulp powder on dough fermentation and quality characteristics of bread

  • Emad KarrarEmail author
  • Abubakr Musa
  • Sujitraj Sheth
  • Weining Huang
  • Frederick Sarpong
  • Xingguo Wang
Original Paper
  • 13 Downloads

Abstract

Sorghum sourdough made with lactic acid bacteria (LAB) and fruit products are of interest in the preparation of a variety of fermented baked products. In this study, different levels (10, 20, and 30%) of sorghum sourdough were fermented by a blend of L. plantarum and L. brevis and various levels of dry nabag pulp powder (1, 3, 5, and 7%). Physicochemical properties of dough and bread as well as the sensory evaluation were determined. Sorghum sourdough' pH decreased from 6.30 to 3.54, total titratable acidity (TTA) increased from 2.8 to 15 mL and bacteria count increased from 6.00E + 08 to 1.14E + 09, CFU/mL after 24 h of fermentation. The addition of sorghum sourdough and nabag powder progressively decreased pH and increased TTA values of bread and dough compared to the controls. Nabag powder significantly (p < 0.05) increased maximum dough fermentation height (Hm), compared to the control, however the other samples were lower (p < 0.05). The maximum gas fermentation height (H’m) and gas properties increased (p < 0.05) for all samples with different addition levels. Crust and crumb color were not affected by sorghum sourdough and nabag pulp powder except for 30% sorghum sourdough and 7% nabag pulp powder. These results showed sorghum sourdough and nabag pulp powder can be used in the bread formulations.

Keywords

Sorghum sourdough Lactic acid bacteria Nabag fruit Dough fermentation Baking characteristics Bread quality 

Notes

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (31571877, 31071595).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    A. Wolter, A.-S. Hager, E. Zannini, M. Czerny, E.K. Arendt, Eur. Food Res. Technol. 239, 1–12 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Din, M.Y.K. Barozai, A.N. Aziz, Pak. J. Bot. 50, 2265–2275 (2018)Google Scholar
  3. 3.
    A. Kacar, S. Avunduk, B. Omuzbuken, E. Aykin, Int. J. Agric. For. Life Sci. 2, 40–46 (2018)Google Scholar
  4. 4.
    L. Galiana-Balaguer, G. Ibáñez, J. Cebolla-Cornejo, S. Rosello, Turk. J. Agric. For. 42, 309–321 (2018)CrossRefGoogle Scholar
  5. 5.
    T.J. Schober, S.R. Bean, D.L. Boyle, J. Agric. Food Chem. 55, 5137–5146 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Galle, C. Schwab, E. Arendt, M. Gänzle, J. Agric. Food Chem. 58, 5834–5841 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Galle, C. Schwab, F. Dal Bello, A. Coffey, M.G. Gänzle, E.K. Arendt, Int. J. Food Microbiol. 155, 105–112 (2012)CrossRefGoogle Scholar
  8. 8.
    E.K. Hüttner, F. Dal Bello, E.K. Arendt, Eur. Food Res. Technol. 230, 849–857 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Gobbetti, C.G. Rizzello, R. Di Cagno, M. De Angelis, Food Microbiol. 37, 30–40 (2014)CrossRefGoogle Scholar
  10. 10.
    J.O. Omedi, W. Huang, X. Su, R. Liu, X. Tang, Y. Xu, P. Rayas-Duarte, J. Cereal Sci. 69, 57–63 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Kim, W. Huang, H. Zhu, P. Rayas-Duarte, Food Chem. 114, 685–692 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Wu, R. Liu, W. Huang, P. Rayas-Duarte, F. Wang, Y. Yao, J. Cereal Sci. 56, 127–133 (2012)CrossRefGoogle Scholar
  13. 13.
    E. Torrieri, O. Pepe, V. Ventorino, P. Masi, S. Cavella, LWT Food Sci. Technol. 56, 508–516 (2014)CrossRefGoogle Scholar
  14. 14.
    J.A. Curiel, H. Rodríguez, I. Acebrón, J.M. Mancheño, B. De Las Rivas, MUNoz, R. J. Agric. Food Chem. 57, 6224–6230 (2009)CrossRefGoogle Scholar
  15. 15.
    W. Aboshora, Z. Lianfu, M. Dahir, M. Qingran, A. Musa, M.A. Gasmalla, K.A. Omar, J. Food Sci. Technol. 53, 591–600 (2016)CrossRefGoogle Scholar
  16. 16.
    M.A. Karrar, W. Huang, F. Wang, C.L. Jia, AJHR 4, 30 (2016)CrossRefGoogle Scholar
  17. 17.
    M.A. Osman, M. Asif Ahmed, Nutr. Food Sci. 39, 70–75 (2009)CrossRefGoogle Scholar
  18. 18.
    C.T. Lockett, C.C. Calvert, L.E. Grivetti, Int J Food SciNutr. 51, 195–208 (2000)Google Scholar
  19. 19.
    L.K. Nyanga: Wageningen University (2012)Google Scholar
  20. 20.
    W. Grosch, H. Wieser, Redox reactions in wheat dough as affected by ascorbic acid. J. Cereal Sci. 29, 1–16 (1999)CrossRefGoogle Scholar
  21. 21.
    Z. Czuchajowska, CFW. 38, 499–503 (1993)Google Scholar
  22. 22.
    C. Hathorn, M. Biswas, P. Gichuhi, A. Bovell-Benjamin, LWT Food Sci. Technol. 41, 803–815 (2008)CrossRefGoogle Scholar
  23. 23.
    G. Bastetti, Techn. Bull. 23, 1–5 (2001)Google Scholar
  24. 24.
    A.A. Ali, M.M. Mustafa, PJN 8, 1349–1353 (2009)CrossRefGoogle Scholar
  25. 25.
    I. Correia, A. Nunes, S. Guedes, A.S. Barros, I. Delgadillo, J. Cereal Sci. 52, 9–15 (2010)CrossRefGoogle Scholar
  26. 26.
    M.R. Hart, R.P. Graham, M. Gee, A.I. Morgan, J. Cereal Sci. 35, 661–665 (1970)Google Scholar
  27. 27.
    A. Basman, H. Köksel, P.K. Ng, Eur. Food Res. Technol. 215(5), 419–424 (2002)CrossRefGoogle Scholar
  28. 28.
    E.K. Arendt, L.A. Ryan, F. Dal Bello, Food Microbiol. 24, 165–174 (2007)CrossRefGoogle Scholar
  29. 29.
    F. Dal Bello, C. Clarke, L. Ryan, H. Ulmer, T. Schober, K. Ström, J. Sjögren, D. Van Sinderen, J. Schnürer, E. Arendt, J. Cereal Sci. 45, 309–318 (2007)CrossRefGoogle Scholar
  30. 30.
    R.S. Chavan, S.R. Chavan, Compr. Rev. Food Sci. 10, 169–182 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Department of Food Engineering and Technology, Faculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
  3. 3.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  4. 4.Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations