Advertisement

Optimization of whey protein concentrate and psyllium husk for the development of protein-fiber rich orange fleshed sweet potato (Ipomoea batatas L.) bread by using response surface methodology

  • Namrata Ankush GiriEmail author
  • B. K. Sakhale
Original Paper

Abstract

The present study was concerned with to optimize the formulation of whey protein concentrate (WPC) and psyllium husk for development of protein-fiber rich orange fleshed sweet potato (OFSP) bread using response surface methodology. The variables considered for the study were WPC (03–09%) and psyllium husk (02–06%) while the responses were protein content (%), fiber content (%), overall acceptability, loaf weight (g), loaf volume (cm3), specific volume (cm3/g) and oven spring (cm). Bread was prepared using 30% OFSP flour and 70% wheat flour. WPC and psyllium husk were used as source of protein and fiber respectively. The level of alone WPC significantly affects (p < 0.05) on protein content whereas psyllium husk on fiber content of OFSP bread. There was significant effect of psyllium husk and non significant effect of WPC on overall acceptability. Moreover, the loaf volume and specific volume of bread was significantly affected by both the factors. The WPC was significantly and psyllium fiber non significantly affects on oven spring of OFSP bread. The optimization was carried out on WPC and psyllium husk in order to know which of the combination will give best protein-fiber content and overall acceptability with quality physical properties. The optimized bread sample was also evaluated for biofunctional (total carotenoids, total phenols, total flavonoids and antioxidant activity) components, and estimated glycemic index (EGI). The optimized OFSP bread containing 09% WPC and 06% psyllium husk was found most acceptable by consumers and it provides 17.72% protein and 8.02% fiber. The estimated glycemic index was found lower 52.58. The total carotenoid, total phenols, total flavonoids and DPPH inhibition of OFSP bread was found as 3.78 (mg/100 g), 51.32 (mg GAE/100 g), 26.80 (mg QE/100 g) and 43.53% respectively. The optimized sample of bread was found superior in carotene, protein and fiber content.

Keywords

Bread Orange fleshed sweet potato Whey protein concentrate Psyllium husk Response surface methodology 

Notes

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest.

References

  1. 1.
    S.P. Heenan, J.P. Dutour, N. Hamud, W. Harvey, C.M. Delahurry, Food Res. Int. 41, 987–997 (2008)CrossRefGoogle Scholar
  2. 2.
    K. Dewettinck, F. Van-Bockstaele, B. Kuhne, D. Van de Walle, T. Courtens, X. Gellynck, J. Cereal Sci. 48, 243–257 (2008)CrossRefGoogle Scholar
  3. 3.
    M.I. Harden, S.P. Yang, J. Food Sci. 40, 75–77 (1975)CrossRefGoogle Scholar
  4. 4.
    B.L. D’Appolonia, Cereal Chem. 54, 53–63 (1977)Google Scholar
  5. 5.
    J.C. Okaka, N.N. Potter, J. Food Sci. 42, 828–833 (1977)CrossRefGoogle Scholar
  6. 6.
    O.P. Sobukola, T.A. Esan, L.O. Sanni, H.A. Bakareb, L. Munoz, Food Bioprod. Process. 95, 27–37 (2015)CrossRefGoogle Scholar
  7. 7.
    V. Hagenimana, M.A. Oyunga, J. Low, S.M. Njoroge, S.T. Gichuki, J. Kabira, The Effects of Women Farmers Adoption of Orange-Fleshed Sweet Potatoes: Raising Vitamin A Intake in Kenya, Research Report Series, vol. 3 (International Centre for Research on Women, Washington, DC, 1999).Google Scholar
  8. 8.
    J.C. Tilman, M.O.B. Colm, M.C. Denise, D. Anja, K.A. Elke, Eur. Food Res. Technol. 216, 369–376 (2003)CrossRefGoogle Scholar
  9. 9.
    E. Bonsi, E. Chibuzo, R. Zibawa, J. Hum. Nutr. Food Sci. 2, 1045 (2014)Google Scholar
  10. 10.
    E.A. Bonsi, R. Zabawa, D. Mortley, C. Bonsi, K. Acheremu, F.C. Amagloh, F.K. Amagloh, Acta Horticult. 1128, 7–14 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Igbabul, N. Grace, A. Julius, Ameri. J. Food Sci. Technol. 2, 109–115 (2014)Google Scholar
  12. 12.
    A.A. Matter, Int. J. Adv. Res. Biol. Sci. 2, 294–303 (2015)Google Scholar
  13. 13.
    H.M. Jayaprakasha, H. Brueckner, J. Food Sci. Technol. 36, 189–204 (1999)Google Scholar
  14. 14.
    S. Tripathy, D. Vijayalakshmi, H.M. Jayaprakasha, J. Food Sci. Technol. 40, 157–161 (2003)Google Scholar
  15. 15.
    S. Pinto, J.P. Prajapati, A.M. Patel, H.G. Patel, M.J. Solanky, J. Food Sci. Technol. 44, 586–590 (2007)Google Scholar
  16. 16.
    S. Singh, G.S. Chauhan, R. Raghuvanshi, P. Sharma, O.P. Chauhan, A. Bajpai, J. Food Sci. Technol. 40, 386–388 (2003)Google Scholar
  17. 17.
    K.V. Rai, H.M. Jayaprakasha, J. Food Sci. Technol. 41, 244–247 (2004)Google Scholar
  18. 18.
    B. Singh, Int. J. Pharm. 334, 1–14 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    J.H. Cummings, CRC Handbook of Dietary Fiber in Human Nutrition, 2nd edn. CRC Press, Boca Raton, pp. 263–349 (1993).Google Scholar
  20. 20.
    J.W. Anderson, L.D. Allgood, A. Lawrence, L.A. Altringer, G.R. Ierdack, D.A. Hengehold, Am. J. Clin. Nutr. 71, 472–479 (2000)CrossRefPubMedGoogle Scholar
  21. 21.
    V. Ganji, J. Kuo, Nutr. J. 7, 22 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    V. Ganji, N. Betts, Euro. J. Clin. Nutr. 49, 915–920 (1995)Google Scholar
  23. 23.
    L. Brown, B. Rpsmer, W. Willett, F.M. Sacks, Am. J. Clin. Nutr. 69, 30–42 (1999)CrossRefPubMedGoogle Scholar
  24. 24.
    M. Khan, J. Nutr. Bull. 3, 322–368 (2005)Google Scholar
  25. 25.
    P. Crowley, H. Grau, P. O’connor, R.J. Fitzgerald, E.K. Arendt, Eur. J. Food Res. Technol. 212,192–197 (2001)CrossRefGoogle Scholar
  26. 26.
    E. Gallagher, A. Kunkel, T.R. Gormley, E.K. Arendt, Eur. J. Food Res. 218, 44–48 (2003)CrossRefGoogle Scholar
  27. 27.
    N.A. Giri, J.T. Sheriff, M.S. Sajeev, C. Pradeepika, J. Root Crops 42, 74–81 (2016)Google Scholar
  28. 28.
    L. Menon, S.D. Majumdar, J. Food Sci. Technol. 52, 4156–4165 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    S.Y. Giami, T. Amasisi, G. Ekiyor, J. Raw Mater. Res. 1, 16–25 (2004)Google Scholar
  30. 30.
    E. Araki, M.T. Ikeda, K. Ashida, K. Tanaka, M. Yanaka, S. Iida, J. Food Sci. Technol. Res. 15, 439–448 (2009)CrossRefGoogle Scholar
  31. 31.
    AOAC, Official Methods of Analysis, 17th edn. (AOAC, Washington, DC, 2000)Google Scholar
  32. 32.
    AOAC, Official Methods of Analysis, 18th edn. (AOAC, Washington, DC, 2006)Google Scholar
  33. 33.
    V.L. Singleton, J.R. Rossi, Am. J. Enol. Viticult. 16, 144–158 (1965)Google Scholar
  34. 34.
    S. Rawat, A. Jugran, L. Giri, I.D. Bhatt, R.S. Rawal, Evidence-Based Complementary and Alternative Medicine, vol. 8 (Hindawi Publishing Corporation, London, 2010)Google Scholar
  35. 35.
    S.N. Moorthy, G. Padmaja, J. Root Crops. 28, 30–37 (2002)Google Scholar
  36. 36.
    H.N. Englyst, J.H. Cummings, Am. J. Clin. Nutr. 44, 42–50 (1986)CrossRefPubMedGoogle Scholar
  37. 37.
    B.V. McCleary, D.A. Monaghan, J. AOAC Int. 85, 665–675 (2002)PubMedGoogle Scholar
  38. 38.
    E.H.J. Kim, J.R. Petire, L. Motoi, M.P. Morgenstern, K.H. Sulton, S. Mishra, L.D. Simmons, Food Biophys. 3, 229–234 (2008)CrossRefGoogle Scholar
  39. 39.
    I. Goni, A. Garcia-Alonso, F.S. Calixto, Nutr. Res. 17, 427–437 (1997)CrossRefGoogle Scholar
  40. 40.
    B. Munaza, S.G.M. Prasad, B. Gayas, Int. J. Sci. Res. Publ. 2, 165–173 (2012)Google Scholar
  41. 41.
    D. Sabanis, D. Lebesi, C. Tzia, Int. J. Food Sci. Nutr. 60, 174–190 (2009)CrossRefPubMedGoogle Scholar
  42. 42.
    M.A.N. Simona, P. Adriana, M. Sevastiţa, P.O.P. Anamaria, M. Elena Andruţa, Bull. UASVM Food Sci. Technol. 74, 33–34 (2017)Google Scholar
  43. 43.
    P.O. Ibidapo, S.B. Kosoko, O.B. Oluwole, S.O. Seyioba, L.-T. Taiwo, O.A. Olukayode, E.G. Nwankego, Int. J. Nutr. Food Sci. 4, 503–508 (2015)CrossRefGoogle Scholar
  44. 44.
    H.O. Agu, J.A. Ukonze, K.A. Paul, Niger. Food J. 28, 188–198 (2010)Google Scholar
  45. 45.
    J.N.C. Okafor, G.I. Okafor, A.U. Ozumba, G.N. Elemo, Pak. J. Nutr. 11, 5–10 (2012)CrossRefGoogle Scholar
  46. 46.
    S.R. Bhise, A. Kaur, Int. J. Eng. Pract. Res. 3, 52–58 (2014)Google Scholar
  47. 47.
    J. Wang, C. Rosell, C.B. Barber, Food Chem. 79, 221–226 (2002)CrossRefGoogle Scholar
  48. 48.
    N.J. Nwosu, C.I. Owuamanam, G.C. Omeire, C.C. Eke, Am. J. Res. Commun. 2, 99–118 (2014)Google Scholar
  49. 49.
    S. Mitra, J. Nutr. Food. Sci. 2, 8–10 (2012)Google Scholar
  50. 50.
    T. Laelago, A. Haile, T. Fekadu, Int. J. Food. Sci. Nutr. Eng. 5, 209–217 (2015)Google Scholar
  51. 51.
    A.C. Bovell-Benjamin, Adv. Food Nutr. Res. 52, 1–48 (2007)CrossRefPubMedGoogle Scholar
  52. 52.
    ILSI (International. Life Sciences Institute) (2008), https://www3.interscience.wiley.com/cgibin/fulltext/119423793/PDFSTART
  53. 53.
    K.F. Foster-Powell, S.H.A. Holt, J.C.B. Miller, Am. J. Clin. Nutr. 76, 50–56 (2002)CrossRefGoogle Scholar
  54. 54.
    V.M. Sardesai, Introduction to Clinical Nutrition (Marcel Dekker Inc., New York, 2003), pp. 339–354Google Scholar
  55. 55.
    R.Y. Van Den Truong, R.Y. Avula, in Sweet Potato: Post Harvest Aspects in Food, ed. by R.C. Ray, K.I. Tomlins (Nova Science Publishers, Inc., Hauppauge, 2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University Department of Chemical Technology, Dr. Babasaheb AmbedkarMarathwada UniversityAurangabadIndia

Personalised recommendations