Microbial and enzymatic hydrolysis of dromedary whey proteins and caseins: techno-functional, radical scavenging, antimicrobial properties and incorporation in beverage formulation

  • Zeineb JradEmail author
  • Olfa Oussaief
  • Touhami Khorchani
  • Halima El-Hatmi
Original Paper


Comparative study of functional properties, radical scavenging and antimicrobial activities of dromedary whey protein and casein hydrolysates was investigated. Dromedary protein hydrolysates were prepared by treatment with digestive proteases (pepsin and pancreatin) and by the proteolytic system of two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus bulgaricus). Solubility and interfacial properties like emulsifying capacity are improved after enzymatic hydrolysis of both whey protein and casein. Whereas, foam capacity and stability are more important in whey protein hydrolysates than casein hydrolysates and are widely influenced by the method of hydrolysis. All hydrolysates showed radical scavenging activities. The highest antioxidant activity is exhibited by WPHE (whey protein hydrolysated by gastro-intestinal enzymes “pepsin and pancreatin”) for DPPH (2,2-diphenyl-1-picrylhydrazyl) test and CNHE (casein hydrolysated by pepsin and pancreatin) for ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay. Further, whey protein hydrolysates displayed antibacterial activity and WPHE was the most effective, particularly against Escherichia coli and Staphylococcus epidermidis. Based on the results, we conclude that WPHE has great technological applicability in food ingredients, as a promising source of functional hydrolysate with antioxidant and antimicrobial activities. For this reason, WPHE was added to the dromedary milk based beverage and chemical, microbiological and sensory properties of the resulting product were investigated. Formulated beverage flavored with strawberry or banana possessed a good microbiological quality. The sensory analysis demonstrated a good acceptance mainly in taste and consistency of the beverage samples. There is only significant difference in the color of the different formulated beverages.


Dromedary milk Whey protein hydrolysates Casein hydrolysates Functional properties Beverage 



The authors thank Dr Isabelle ADT (University of Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d’Accueiln°3733), IUT Lyon 1, 01000 Bourg en Bresse, France) for his kind help with gel filtration analysis.


  1. 1.
    M.A. Alenisan, H.H. Alqattan, L.S. Tolbah, A.B. Shori, Antioxidant properties of dairy products fortified with natural additives: a review. J. Assoc. Arab. Univ. Basic Appl. Sci. 24, 101–106 (2017)Google Scholar
  2. 2.
    M.M. Tajkarimi, S.A. Ibrahim, D.O. Cliver, Antimicrobial herb and spice compounds in food. Food Control 21, 1199–1218 (2010)CrossRefGoogle Scholar
  3. 3.
    Z. Jrad, H. El Hatmi, I. Adt, J.M. Girardet, C. Cakir-Kiefer, J. Jardin, P. Degraeve, T. Khorchani, N. Oulahal, Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-converting enzyme inhibitory activities of camel colostrum and milk proteins. Dairy Sci. Technol. 94, 205–224 (2014)CrossRefGoogle Scholar
  4. 4.
    Z. Jrad, J.M. Girardet, I. Adt, N. Oulahal, P. Degraeve, T. Khorchani, H. El Hatmi, Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion. Mljekarstvo 64, 287–294 (2014)CrossRefGoogle Scholar
  5. 5.
    H. El-Hatmi, Z. Jrad, T. Khorchani, J. Jardin, C. Poirson, C. Perrin, C. Cakir-Kiefer, J.M. Girardet, Identification of bioactive peptides derived from caseins, glycosylation-dependent cell adhesion molecule-1 (GlyCAM-1), and peptidoglycan recognition protein-1 (PGRP-1) in fermented camel milk. Int. Dairy J. 56, 159–168 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Almi-Sebbane, I. Adt, P. Degraeve, J. Jardin, E. Bettler, R. Terreux, N. Oulahal, A. Mati, Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein. Int. Dairy J. 86, 49–56 (2018)CrossRefGoogle Scholar
  7. 7.
    O.A. Al haj, H.A. Alkanhal, Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 20, 811–821 (2010)CrossRefGoogle Scholar
  8. 8.
    O.U. Beg, H.V. Bahr-Lindstrom, Z.H. Zaidi, H. Jornvall, A camel milk whey protein rich in half-cystine: primary structure, assessment of variations, internal repeat patterns, and relationships with neurophysin and other active polypeptides. Eur. J. Biochem. 159, 195–201 (1986)CrossRefGoogle Scholar
  9. 9.
    H. El-Hatmi, J.M. Girardet, J.L. Gaillard, M.H. Yahyaoui, H. Attia, Characterisation of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Rumin. Res. 70, 267–271 (2007)CrossRefGoogle Scholar
  10. 10.
    E. El-Agamy, M. Nawar, S.M. Shamsia, S.F.W. Awad, G. Haenlein, Are camel milk proteins convenient to the nutrition of cow milk allergic children? Small Rumin. Res. 82, 16 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Hailu, E.B. Hansan, E. Seifu, M. Eshetu, R. Ipsen, S. Kappeler, Functional and technological properties of camel milk proteins: a review. J. Dairy Res. 83, 422–429 (2016)CrossRefGoogle Scholar
  12. 12.
    L.C. Laleye, B. Jobe, A.A.H. Wasesa, Comparative study on heat stability and functionality of camel and bovine whey proteins. J. Dairy Sci. 91, 4527–4534 (2008)CrossRefGoogle Scholar
  13. 13.
    R. Lajnaf, L. Picart-Palmade, E. Cases, H. Attia, S. Marchesseau, M.A. Ayadi, The foaming properties of camel and bovine whey: the impact of pH and heat treatment. Food Chem. 240, 295–303 (2018)CrossRefGoogle Scholar
  14. 14.
    R. Lajnaf, L. Picart-Palmade, H. Attia, S. Marchesseau, M.A. Ayadi, The effect of pH and heat treatments on the foaming properties of purified α-lactalbumin from camel milk. Colloids Surf. B 156, 55–61 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Momen, M. Salami, F. Alavi, Z. Emam-Djomeh, A.A. Moosavi-Movahedi, The techno-functional properties of camel whey protein compared to bovine whey protein for fabrication a model high protein emulsion. LWT Food Sci. Technol. 101, 543–550 (2019)CrossRefGoogle Scholar
  16. 16.
    J.E. Kinsella, Functional properties of protein foods. Crit. Rev. Food Sci. Nutr. 1, 219–229 (1976)CrossRefGoogle Scholar
  17. 17.
    A. Mahajan, S. Dua, Salts and pH induced changes in functional properties of amaranth (Amaranthus tricolor L.) seed meal. Cereal Chem. 79, 834–837 (2002)CrossRefGoogle Scholar
  18. 18.
    E. Dickinson, M. Golding, Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids Surf. A 144, 167–177 (1998)CrossRefGoogle Scholar
  19. 19.
    F. Tamm, S. Herbst, A. Brodkorb, S. Drusch, Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocoll. 58, 204–214 (2016)CrossRefGoogle Scholar
  20. 20.
    C.I. Onwulata, P. Tomasula, Whey texturization: a way forward. Food Technol. 58, 50–55 (2004)Google Scholar
  21. 21.
    D.R. Janiaski, T.C. Pimentel, A.G. Cruz, S.H. Prudencio, Strawberry-flavored yogurts and whey beverages: what is the sensory profile of the ideal product? J. Dairy Sci. 99, 5273–5283 (2016)CrossRefGoogle Scholar
  22. 22.
    A.G. Cruz, A.S. de Sant’Ana, M.M. Macchione, Â.M. Teixeira, F.L. Schmidt, Milk drink using whey butter cheese (queijo manteiga) and acerola juice as a potential source of vitamin C. Food Bioprocess. Technol. 2, 368–373 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Saha, P.R. Ray, P.K. Ghatak, S.K. Bag, T. Hazra, Physico-chemical quality and storage stability of fermented Chhana whey beverages. Indian J. Dairy Sci. 70, 398–403 (2017)Google Scholar
  24. 24.
    J.T. Guimarães, E.K. Silva, V.O. Alvarenga, A.L.R. Costa, R.L. Cunha, A.S. Sant'Anna, M.Q. Freitas, M.A.A. Meireles, A.G. Cruz, Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason. Sonochem. 44, 251–260 (2018)CrossRefGoogle Scholar
  25. 25.
    F.P. Souza, C.F. Balthazar, J.T. Guimarães, T.C. Pimentel, E.A. Esmerino, M.Q. Freitas, R.S.L. Raices, M.C. Silva, A.G. Cruz, The addition of xyloligoosaccharide in strawberry-flavored whey beverage. LWT-Food Sci. Technol. 109, 118–122 (2019)CrossRefGoogle Scholar
  26. 26.
    M. Salami, R. Yousefi, M.R. Ehsani, S.H. Razavi, J.M. Chobert, T. Haertlé, A.A. Saboury, M.S. Atri, A. Niasari-Naslaji, F. Ahmad, A.A. Moosavi-Movahedi, Enzymatic digestion and antioxidant activity of the native and molten globule states of camel α-lactalbumin: possible significance for use in infant formula. Int. Dairy J. 19, 518–523 (2009)CrossRefGoogle Scholar
  27. 27.
    Z. Jrad, H. El-Hatmi, I. Adt, S. Gouin, J. Jardin, O. Oussaief, M. Dbara, S. Arroum, T. Khorchani, P. Degraeve, N. Oulahal, Antilisterial activity of dromedary lactoferrin peptic hydrolysates. J. Dairy Sci. 102, 4844–4856 (2019)CrossRefGoogle Scholar
  28. 28.
    L. Miclo, E. Roux, M. Genay, E. Brusseaux, C. Poirson, N. Jameh, C. Perrin, A. Dary, Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. J. Agric. Food Chem. 60, 554–565 (2012)CrossRefGoogle Scholar
  29. 29.
    C. Dupas, I. Adt, A. Cottaz, R. Boutrou, D. Molle, J. Jardin, T. Jouvet, P. Degraeve, A chromatographic procedure for semi-quantitative evaluation of casein phosphor peptides in cheese. Dairy Sci. Technol. 89, 519–529 (2009)CrossRefGoogle Scholar
  30. 30.
    B. Sammartin, O. Diaz, L. Rodriguez-Turienzo, A. Cobos, Functional properties of caprine whey protein concentrates obtained from clarified cheese whey. Small Rumin. Res. 110, 52–56 (2013)CrossRefGoogle Scholar
  31. 31.
    M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 249–254 (1976)CrossRefGoogle Scholar
  32. 32.
    L.R. Beuchat, J.P. Cherry, M.R. Quinn, Physicochemical properties of peanut flour as affected by proteolysis. J. Agric. Food Chem. 23, 616–620 (1975)CrossRefGoogle Scholar
  33. 33.
    L.R. Beuchat, Functional and electrophoretic characteristics of succinylated peanut flour protein. J. Agric. Food Chem. 25, 258–261 (1977)CrossRefGoogle Scholar
  34. 34.
    L.G. Phillips, J.B. German, T.E. Oneill, E.A. Foegeding, V.R. Harwalkar, A. Kilara, B.A. Lewis, M.E. Mangino, C.V. Morr, J.M. Regenstein, D.M. Smith, J.E. Kinsella, Standardized procedure for measuring foaming properties of three proteins, a collaborative study. J. Food Sci. 55, 1441–1453 (1990)CrossRefGoogle Scholar
  35. 35.
    P. Bersuder, M. Hole, G. Smith, Antioxidants from a heated histidine glucose model system I: investigation of the antioxidant role of histidine and isolation of antioxidants by high performance liquid chromatography. J. Am. Oil Chem. Soc. 75, 181–187 (1998)CrossRefGoogle Scholar
  36. 36.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  37. 37.
    Z. Jrad, H. El Hatmi, I. Fguiri, S. Arroum, M. Assadi, T. Khorchani, Antibacterial activity of lactic acid bacteria isolated from Tunisian camel milk. Afr. J. Microbiol. Res. 7, 1002–1008 (2013)Google Scholar
  38. 38.
    R. Sinha, C. Radha, J. Prakash, P. Kaul, Whey protein hydrolysate: functional properties, nutritional quality and utilization in beverage formulation. Food Chem. 101, 1481–1491 (2007)CrossRefGoogle Scholar
  39. 39.
    E. Dickinson, Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agric. 93, 710–721 (2013)CrossRefGoogle Scholar
  40. 40.
    D. Kumar, M.K. Chatli, R. Singh, N. Mehta, P. Kumar, Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Rumin. Res. 139, 20–25 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Salami, R. Yousefi, M.R. Ehsani, M. Dalgalarrondo, J.M. Chobert, T. Haertlé, S.H. Razavi, A.A. Saboury, A. Niasari-Naslaji, A.A. Moosavi-Movahedi, Kenitic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. Int. Dairy J. 18, 1097–1102 (2008)CrossRefGoogle Scholar
  42. 42.
    Z. Jrad, H. El Hatmi, I. Adt, T. Khorchani, P. Degraeve, N. Oulahal, Anti-microbial activity of camel milk casein and its hydrolysates. Acta Alim. 44, 609–616 (2015)CrossRefGoogle Scholar
  43. 43.
    A.E. Hangerman, K.M. Riedl, G.A. Jones, K.N. Sovik, N.T. Ritchard, P.W. Hartzfeld, T.L. Riechel, High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46, 1887–1892 (1998)CrossRefGoogle Scholar
  44. 44.
    M. Shukla, Y. Jha, S. Admassu, Development of probiotic beverage from whey and pineapple juice. J. Food Process. Technol. 4, 2–4 (2013)Google Scholar
  45. 45.
    U. Council Directive, Directive laying down the health rules for the production and placing on the market of raw milk, heat-treated milk and milk-based products. (1992).Google Scholar
  46. 46.
    S.M.H. Kumar, D. Saxena, L. Sabikhi, Developments in whey based beverages. Indian J. Dairy Sci. 66, 281–287 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Livestock and Wildlife Laboratory, Institute of Arid Regions of MedenineUniversity of GabesMedenineTunisia
  2. 2.Agri-Food Department, Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia

Personalised recommendations