Chia (Salvia hispanica) protein fractions: characterization and emulsifying properties

  • Luciana M. Julio
  • Jorge C. Ruiz-Ruiz
  • Mabel C. Tomás
  • Maira R. Segura-CamposEmail author
Original Paper


A material with a high content of fibers and proteins is generated as a by-product of the chia oil extraction process. A strategy to add value to this by-product is to evaluate its possible use as a food ingredient. Thus, using a chia protein-rich fraction (CPRF) of chia seeds as starting material, albumins, globulins, glutelins, and prolamins fractions were obtained, characterized, and their emulsifying properties investigated. CPRF covers the essential amino acid requirements suggested by FAO; protein fractions only cover the requirements for Tre, Tyr and Val. Protein solubility profile for CPRF, globulins and prolamins was similar, with maximum solubility at pH 9. In contrast, glutelin and albumin fractions showed highest solubility at pH 5. Oil/Water (O/W) emulsions, using the chia protein fractions as emulsifying agent, were obtained at different pH (3, 5, 7, and 9) in their native and denatured state. The global stability and the destabilization kinetics of these systems were evaluated by their backscattering profiles. Additionally, the particle size distributions and their D4.3 diameter were determined. The emulsions destabilization occurred mainly by creaming process, with globulins as the fraction that led to most stable systems. Besides, high pH values improved the stability of emulsions prepared with globulins, glutelins, and the protein-rich fraction. The heat treatment application only slightly improved the emulsifying activity of the CPRF. These results indicate that chia protein fractions could be used as food ingredient to improve the amino acid content and the techno-functional properties of the functional foods.


Chia Protein-rich fraction Protein fractions Characterization Emulsifying properties 



The authors are grateful to the “Consejo Superior de Investigaciones Científicas” (CSIC, España) [Project i-LINK0923] and “Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo” (CYTED) (Reference 119RT0567), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) Project PICT 2016 0323 and the Universidad Nacional de La Plata Project X756 (Argentina).

Compliance with ethical standards

Conflict of interest

We declare no conflicts of interest exist in the submission of this manuscript.

Research involving human or animal subjects

This article does not contain any studies with human or animal subjects.


  1. 1.
    W. Coates, R. Ayerza, Production potential of chia in north-western Argentina. Ind. Crop Prod. 5, 229 (1996)CrossRefGoogle Scholar
  2. 2.
    R. Ullah, M. Nadeem, A. Khalique, M. Imran, S. Mehmood, A. Javid, J. Hussain, Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J. Food Sci. Technol. 53, 1750 (2016)CrossRefGoogle Scholar
  3. 3.
    M.L. Martínez, M.A. Marín, C.M. Salgado Faller, J. Revol, M.C. Penci, P.D. Ribotta, Chia (Salvia hispánica L) oil extraction: study of processing parameters. LWT-Food Sci. Technol. 47, 78–82 (2012)Google Scholar
  4. 4.
    M.R. Sandoval-Oliveros, O. Paredes-López, Isolation and characterization of proteins from chia seeds (Salvia hispanica). J. Agric. Food Chem. 61, 193–201 (2013)CrossRefGoogle Scholar
  5. 5.
    V.Y. Ixtaina, S.M. Nolasco, M.C. Tomás, Physical properties of chia (Salvia hispanica L.) seeds. Ind. Crops Prod. 28(3), 286–293 (2008)CrossRefGoogle Scholar
  6. 6.
    N.M. Ali, S.K. Yeap, W.Y. Ho, B.K. Beh, S.W. Tan, S.G. Tan, The promising future of chia, Salvia hispanica L. J. Biomed. Biotechnol. 2012, 171956 (2012)CrossRefGoogle Scholar
  7. 7.
    R.N. Tharanathan, S. Mahadevamma, Grain legumes—a boom to human nutrition. Trends Food Sci. Technol. 14, 507–518 (2003)CrossRefGoogle Scholar
  8. 8.
    M.S. Lizarraga, L.G. Pan, M.C. Añon, L.G. Santiago, Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions-I. Whey protein concentrates. Food Hydrocolloid. 22, 868–878 (2008).CrossRefGoogle Scholar
  9. 9.
    A.P. Adebiyi, R.E. Aluko, Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chem. 128, 902–908 (2011)CrossRefGoogle Scholar
  10. 10.
    J.A. Vázquez-Ovando, J.G. Rosado-Rubio, L.A. Chel-Guerrero, D.A. Betancur-Ancona, Procesamiento en seco de harina de chia (Salvia hispánica L.) flour: chemical characterization of fiber and protein. CYTA J. Food. 8(2), 117–127 (2010)CrossRefGoogle Scholar
  11. 11.
    B.L. Olivos-Lugo, M.A. Valdivia-López, A. Tecante, Thermal and physicochemical properties and nutritional value of the protein fraction of Mexican chia seed (Salvia hispanica L.). Food Sci. Technol. Int. 16(1), 89–96 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.P. Timilsena, B. Wang, R. Adhikari, B. Adhikari, Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocolloid. 52, 554–563 (2016)CrossRefGoogle Scholar
  13. 13.
    Association of Official Analytical Chemists-AOAC Official Methods of Analysis, AOAC, Arlington, VA, USA. Secs. 920.39, 923.03, 925.09, 954.01, 962.09, 992.16 (1997)Google Scholar
  14. 14.
    H. Schägger, Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006)CrossRefGoogle Scholar
  15. 15.
    B.K. Sørensen, P. Højrup, E. Østergard, C.S. Jørgensen, J. Enghild, L.R. Ryder, G. Houen, Silver staining of proteins on electroblotting membranes and intensification of silver staining of proteins separated by polyacrylamide gel electrophoresis. Anal. Biochem. 304, 33–41 (2002)CrossRefGoogle Scholar
  16. 16.
    M. Alaiz, J.L. Navarro, J. Giron, E. Vioque, Amino acid analysis by high-performance liquid chromatography after derivatization with diethylethoxymethylenemalonate. J. Chromatogr. 591, 181–186 (1992)CrossRefGoogle Scholar
  17. 17.
    P.S. Bora, Functional properties of native and succinylated lentil (Lens culinaris) globulins. Food Chem. 77(2), 171–176 (2002)CrossRefGoogle Scholar
  18. 18.
    A. Kato, S. Nakai, Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim. BIophys. Acta 624(1), 13–20 (1980)CrossRefGoogle Scholar
  19. 19.
    D.M. Cabezas, R. Madoery, B.W.K. Diehl, M.C. Tomas, Emulsifying properties of different modified sunflower lecithins. J. Am. Oil Chem. Soc. 89, 355–361 (2012)CrossRefGoogle Scholar
  20. 20.
    D. Montgomery, Diseño y análisis de experimentos (México, Limusa-Wiley, 2004)Google Scholar
  21. 21.
    C. Silva, V.A.S. Garcia, C.M. Zanette, Chia (Salvia hispanica L.) oil extraction using different organic solvents: oil yield, fatty acids profile and technological analysis of defatted meal. Int. Food Res. J. 23(3), 998–1004 (2016)Google Scholar
  22. 22.
    P.N. Nikokyris, K. Kandylis, Feed protein fractions in various solvents of ruminant feedstuffs. J. Sci. Food Agric. 75(2), 198–204 (1997)CrossRefGoogle Scholar
  23. 23.
    C. Klose, E.K. Arendt, Proteins in oats; their synthesis and changes during germination: a review. Crit. Rev. Food Sci. Nutr. 52(7), 629–639 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Liu, H. Wang, Z. Cui, X. He, X. Wang, X. Zeng, Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein. Food Chem. 102(4), 1310–1316 (2007)CrossRefGoogle Scholar
  25. 25.
    R. Srivastava, B. Roy, Effect of varying pH on protein composition and yield of amaranth seed (Amaranthus blitum). J. Environ. Biol. 35(5), 629–634 (2011)Google Scholar
  26. 26.
    P.R. Shewry, N.G. Halford, Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53(370), 947–958 (2002)CrossRefGoogle Scholar
  27. 27.
    D. Orona-Tamayo, M.E. Valverde, B. Nieto-Rendón, O. Paredes-López, Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. Food Sci. Technol. 64, 236–242 (2015)Google Scholar
  28. 28.
    FAO/WHO Protein quality evaluations. Report of joint FAO/WHO expert consultation. Food and nutrition. Paper No. 51. Food Agriculture Organization and the World Health Organization. Rome. Italy (1991)Google Scholar
  29. 29.
    O. Tossavainen, M. Outinen, M. Harju, S. Makinen-Kiljunen, Removal of beta-lactoglobulin residues from an enzymatic whey protein hydrolysate. Milchwissenschaft 51, 628–632 (1996)Google Scholar
  30. 30.
    J.M. Kovacs, C.T. Mant, R.S. Hodges, Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects. Biopolymers 84(3), 283–297 (2006)CrossRefGoogle Scholar
  31. 31.
    P. Ivanova, V. Chalova, L. Koleva, I. Pishtiyski, Amino acid composition and solubility of proteins isolated from sunflower meal produced in Bulgaria. Int. Food Res. J. 20(6), 2995–3000 (2013)Google Scholar
  32. 32.
    A. Mohamed, S.C. Peterson, M.P. Hojilla-Evangelista, D.J. Sessa, P. Rayas-Duarte, G. Biresaw, Effect of heat treatment and pH on the physicochemical properties of lupin protein. J. Am. Oil Chem. Soc. 81, 1153–1157 (2004)CrossRefGoogle Scholar
  33. 33.
    O. Mengual, G. Meunier, I. Cayré, K. Puech, P. Snabre, TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta 50, 445–456 (1999)CrossRefGoogle Scholar
  34. 34.
    G. Palazolo, D.A. Sorgentini, J.R. Wagner, Coalescence and flocculation in O/W emulsions of native and denatured whey soy proteins in comparison with soy protein isolates. Food Hydrocol. 19, 595–604 (2005)CrossRefGoogle Scholar
  35. 35.
    D.J. McClements, Food Emulsions: Principles, Practice and Techniques, 3rd edn. (CRC Press, Boca Raton, FL, 2015)CrossRefGoogle Scholar
  36. 36.
    E. Onsaard, M. Vittayanont, S. Srigam, D.J. McClements, Comparison of properties of oil-in-water emulsions stabilized by coconut cream proteins with those stabilized by whey protein isolate. Food Res. Int. 1, 78–86 (2006)CrossRefGoogle Scholar
  37. 37.
    A.C. Karaca, N. Low, M. Nickerson, Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 44(9), 2742–2750 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CIC-CONICET-Facultad de Ciencias Exactas (FCE)Universidad Nacional de La Plata (UNLP)La PlataArgentina
  2. 2.Escuela de Nutrición, División de Ciencias de la SaludUniversidad Anáhuac-MayabMéridaMexico
  3. 3.Facultad de Ingeniería QuímicaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations