Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 3025–3032 | Cite as

Respiration rate and shelf-life study of Crotalaria longirostrata (chipilín)

  • Dolores RoviraEmail author
  • Claudia Alfaro
  • Violeta Martínez
  • Isela Menjívar
Original Paper


The respiration rate and the shelf-life were studied on Crotalaria longirostrata, an edible leaf cultivated on the Central American region, locally known as chipilín. Besides being a native plant in El Salvador, chipilín is a commercialized food product. In order to obtain experimental data of respiration rates, a closed chamber approach was employed at temperatures of 6, 20 and 30 °C. The experimental data obtained was fit to a two-parameter non-exponential equation to obtain the respiration rates in terms of CO2 and O2 changes over time. The gas concentration results were also fit to an enzyme kinetics respiration model of the Michaelis–Menten type. Furthermore, the respiration rates from the enzyme kinetics model were used to determine the temperature effect on the respiration. This study also provides results of the shelf-life of the unpacked and packed chipilín with different materials, low density polyethylene (LDPE) and polypropylene (PP), by using a sensory panel and fitting data to the Weibull’s probabilistic distribution. Overall results show that the enzyme kinetics model, based on uncompetitive inhibition of CO2, applies very well to chipilín. The shelf life study results indicated that packaging in LDPE and PP bags increased chipilín shelf life by 3.7 and 2.5 times respectively, compared to storage without packaging.


Respiration rate Enzyme kinetics Weibull hazard Shelf life Crotalaria longirostrata Chipilin 



The United States Agency for International Development (USAID) and the Universidad Centroamericana “José Simeón Cañas” are thanked for providing funding for the present research project. We thank all the students who participated in the present project as research assistants. Dr. Dora Lopez is thanked for providing feedback to our manuscript.


  1. 1.
    R. Tanner, The state of the specialty food industry (2014).Google Scholar
  2. 2.
    U. S. Central Intelligence Agency, “El Salvador,” The World Factbook, 2017. [Online]. Available:
  3. 3.
    T.B. Martínez Carranza, Evaluación de cinco fuentes alimenticias en la reproducción de caracoles de agua dulce (Pomacea flagellata). PhD diss., Universidad de El Salvador, 2016Google Scholar
  4. 4.
    A. Elias Marroquin, S. Lopez Alas, I. Peralta Orellana, Diseño de una propuesta para la reactivación y desarrollo del subsector agrícola de frutas y verduras étnicas con miras a la exportación, conservando sus características naturales. PhD diss., Universidad de El Salvador, 2013.Google Scholar
  5. 5.
    MAG-MINEC, Agricultural Census: National Results, San Salvador, 2009.Google Scholar
  6. 6.
    A.A. Kader, Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol 40, 99–104 (1986)Google Scholar
  7. 7.
    J.A. Bartz, J.K. Brecht, J. Weichmann, Postharvest Physiology and Pathology of Vegetables (M. Dekker, New York, 2003)Google Scholar
  8. 8.
    H.W. Peppelenbos, J. Leven van't, Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables. Postharvest Biol. Technol. 7(1–2), 27–40 (1996)CrossRefGoogle Scholar
  9. 9.
    C. Fagundes, B.A.M. Carciofi, A.R. Monteiro, Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures. Food Sci. Technol. 33(1), 60–67 (2013)CrossRefGoogle Scholar
  10. 10.
    S.D. Bhande, M.R. Ravindra, T.K. Goswami, Respiration rate of banana fruit under aerobic conditions at different storage temperatures. J. Food Eng. 87(1), 116–123 (2008)CrossRefGoogle Scholar
  11. 11.
    A.R. Sousa, J.C. Oliveira, M.J. Sousa-Gallagher, Determination of the respiration rate parameters of cherry tomatoes and their joint confidence regions using closed systems. J. Food Eng. 206, 13–22 (2017)CrossRefGoogle Scholar
  12. 12.
    D.S. Lee, Y. Song, K.L. Yam, Application of an enzyme kinetics based respiration model to permeable system experiment of fresh produce. J. Food Eng. 27(3), 297–310 (1996)CrossRefGoogle Scholar
  13. 13.
    T.P. Labuza, K. Schmidt, Use of sensory data in the shelf life testing of foods: principles and graphical methods for evaluation. Cereal Foods World 32(2), 193–206 (1988)Google Scholar
  14. 14.
    W.S. Duyvesteyn, E. Shimoni, T.P. Labuza, Determination of the end of shelf life for milk using Weibull hazard method. LWT Food Sci. Technol. 34(3), 143–148 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Cardelli, T.P. Labuza, Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee. LWT Food Sci. Technol. 34(5), 273–278 (2001)CrossRefGoogle Scholar
  16. 16.
    K. Schmidt, J. Bouma, Estimating shelf-life of cottage cheese using hazard analysis. J. Dairy Sci. 75(11), 2922–2927 (1992)CrossRefGoogle Scholar
  17. 17.
    N.M. Keklik, I.N. Develi, E.B. Sur, Estimation of the shelf life of pezik pickles using Weibull hazard analysis. Food Sci. Technol. 37(suppl 1), 125–130 (2017)CrossRefGoogle Scholar
  18. 18.
    V.S. Álvares, F.L. Finger, R.C.D.A. Santos, J.R.D.S. Negreiros, V.W.D. Casali, Effect of pre-cooling on the postharvest of parsley leaves. J. Food Agric. Environ. 5(2), 31–34 (2007)Google Scholar
  19. 19.
    C.K.R. Barbosa, L.F. Finger, V.W.D. Casali, C.K.R. Barbosa, F.L. Finger, V.W.D. Casali, Handling and postharvest shelf life of ora-pro-nobis leaves. Acta Sci. Agron. 37(3), 307 (2015)CrossRefGoogle Scholar
  20. 20.
    D.D. Lange, A.C. Cameron, Postharvest shelf life of sweet basil (Ocimum basilicum). HortScience 29(2), 102–103 (1994)CrossRefGoogle Scholar
  21. 21.
    P.E. Hagger, D.S. Lee, K. Yam, Application of an enzyme kinetics based respiration model to closed system experiments for fresh produce. J. Food Process Eng. 15(2), 143–157 (1992)CrossRefGoogle Scholar
  22. 22.
    Y. Song, H.K. Kim, K.L. Yam, Respiration rate of blueberry in modified atmosphere at various temperatures. J. Am. Soc. Hortic. Sci. 117(6), 925–929 (1992)CrossRefGoogle Scholar
  23. 23.
    C. Agudelo, C. Restrepo, J.E. Zapata, Respiration kinetic of mango (Mangifera indica) as function of storage temperature. Rev. Fac. Nac. Agron. 69(2), 7985–7995 (2016)CrossRefGoogle Scholar
  24. 24.
    Microsoft, Microsoft Excel SOLVER (2017).Google Scholar
  25. 25.
    S.C. Fonseca, F.A. Oliveira, J.K. Brecht, Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. J. Food Eng. 52(2), 99–119 (2002)CrossRefGoogle Scholar
  26. 26.
    W.S. Duyvesteyn, E. Shimoni, T.P. Labuza, Determination of the end of shelf-life for milk using weibull hazard method. LWT Food Sci. Technol. 34(3), 143–148 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería de Procesos y Ciencias AmbientalesUniversidad Centroamericana José Simeón CañasSan SalvadorEl Salvador

Personalised recommendations