Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2998–3004 | Cite as

The effect of Rhodotorula mucilaginosa on degradation of citrinin production by Penicillium digitatum and its toxin in vitro

  • Joseph Ahima
  • Hongyin ZhangEmail author
  • Maurice Tibiru Apaliya
  • Xiaoyun Zhang
  • Qiya Yang
  • Lina Zhao
Original Paper

Abstract

Penicillium digitatum is a mesophilic fungus belonging to the genus, Penicillium and a producer of citrinin. This mycotoxin is a secondary metabolite and its existence has been reported in several agricultural products. In this study, the effect of Rhodotorula mucilaginosa on the production of citrinin by P. digitatum and the degradation of citrinin in vitro was investigated. The effect of R. mucilaginosa was dependent on the type of media, yeast concentration, pH, and temperature. R. mucilaginosa degraded citrinin produced by P. digitatum and the toxin with a degradation rate of 91.67% and 91.61%, respectively compared to the control. The degradation of citrinin by R. mucilaginosa was significant in nutrient yeast dextrose broth compared to potato dextrose broth where it was fairly stable throughout the test period. The yeast concentration that showed better efficacy was 1 × 108 cells/mL with a degradation rate of 93.10% at 48 h. Numerically, degradation was highest at 28 °C with a pH 4.0 being the most favorable for citrinin degradation by R. mucilaginosa.

Keywords

Rhodoturola mucilaginosa Citrinin Penicillium digitatum Ochratoxin A Patulin 

Notes

Acknowledgements

This work was supported by the National Key Research & Development Program of China (2016YFD0400902), the National Natural Science Foundation of China (31772037) and 333 High-Level Personnel Training Project of Jiangsu Province (BRA2017442).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    V. Ostry, F. Malir, J. Ruprich, Toxins 5, 1574–1586 (2013)CrossRefGoogle Scholar
  2. 2.
    N. Samsudin, N. Abdullah, J. Mycotoxin Res. 29(2), 89–96 (2013)CrossRefGoogle Scholar
  3. 3.
    N.D. Singh, A.K. Sharma, R.D. Patil, S. Rahman, G.D. Leishangthem, M. Kumar, Indian J. Exp. Biol. 52(2), 159–167 (2014)PubMedGoogle Scholar
  4. 4.
    M. Kumar, P. Dwivedi, A.K. Sharma, J. Toxicol Ind. Health 30(1), 90–98 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Arai, T. Hibino, J. Cancer Lett. 17(3), 281–287 (1983)CrossRefGoogle Scholar
  6. 6.
    EFSA, EFSA J. 10, 2605 (2012)Google Scholar
  7. 7.
    L. Gayathri, R. Dhivya, D. Dhanasekaran, J. Food Chem. Toxicol. 83, 151–163 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Papp, G. Mãte, N. Mike, Z. Gazdag, M. Pesti, J. Toxicon 111, 100–107 (2016)CrossRefGoogle Scholar
  9. 9.
    Q. Han, L.B. Yu, Y.Q. Guo, J. Exp. Toxicol. Pathol. 64(5), 465–469 (2012)CrossRefGoogle Scholar
  10. 10.
    I. Bovdisova, K. Zbynovska, A.A. Kalafov, J. Microbiol Biotech. Food. Sci. 5(1), 10–13 (2016)CrossRefGoogle Scholar
  11. 11.
    I.G. Azizi, M. Gorgi, S. Rouhi, M. Azimi, P. Shakib, B. Shahbazi, Iran J. Public Health 43, 241–247 (2014)Google Scholar
  12. 12.
    N. Bellí, S. Marín, V. Sanchis, A.J. Ramos, Food Addit. Contam. 23, 1021–1029 (2006)CrossRefGoogle Scholar
  13. 13.
    G.K. Mahunu, H.Y. Zhang, Q.Y. Yang, C.L. Li, X.F. Zheng, Crit. Rev. Microbiol. 42, 643–655 (2016)PubMedGoogle Scholar
  14. 14.
    B. Grazioli, M.D. Fumi, A. Silva, Int. J. Food Microbiol. 111, S93–S96 (2006)CrossRefGoogle Scholar
  15. 15.
    Q. Yang, H. Wang, H. Zhang, X. Zhang, M.T. Apaliya, X. Zheng, Postharvest Biol. Technol. 126, 15–22 (2017)CrossRefGoogle Scholar
  16. 16.
    M.L. Ponsone, M.L.M.L. Chiotta, M. Combina, A. Dalcero, S. Chulze, Int. J. Food Microbiol 151, 70–77 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Cao, H. Zhang, Q. Yang, R. Ren, Int. J. Food. Microbiol. 162, 167–173 (2013)CrossRefGoogle Scholar
  18. 18.
    L. Wanhai, H. Zhang, P. Li, M.T. Apaliya, Q. Yang, Y. Peng, Biol. Control 103, 30–38 (2016)CrossRefGoogle Scholar
  19. 19.
    E.E. Abd-Allah, S.M. Ezzat, Phytoparasitica 33, 73–84 (2005)CrossRefGoogle Scholar
  20. 20.
    Y.H. Chen, S.C. Sheu, J.L. Mau, P.C. Hsieh, World J. Microbiol. Biotechnol. 27, 487–493 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Kanpiengjai, R. Mahawan, S. Lumyong, C. Khanongnuch, Ann. Microbiol. 66, 807–816 (2015)CrossRefGoogle Scholar
  22. 22.
    Q. Yang, H. Zhang, X. Zhang, X. Zheng, J. Qian, Front. Microbiol. 6, 1296 (2015)PubMedPubMedCentralGoogle Scholar
  23. 23.
    S. Wang, S. Zhao, H. Mu, Proc. Int. Conf. Appl. Biotechnol. 251, 1591–1599 (2013)Google Scholar
  24. 24.
    H. Zhang, L. Chen, Y. Sun, L. Zhao, X. Zheng, Q. Yang, Mol. Plant Microbe Interact. 30, 301 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Teixido, I. Vinas, J. Usall, V. Sanchis, N. Magan, J. Appl. Microbiol. 84, 192–200 (1998)CrossRefGoogle Scholar
  26. 26.
    Q.Y. Yang, J.J. Wang, H.Y. Zhang, C.L. Li, X.Y. Zhang, World Mycot J. 9, 1–10 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Patharajan, K.R.N. Reddy, V. Karthikeyan, D. Spadaro, A. Lore, M.L. Gullino, Food Control 22, 290–296 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Petruzzi, A. Bevilacqua, A. Baiano, L. Beneduce, M.R. Corbo, M. Sinigaglia, Food Control 35, 373–377 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Piotrowska, Acta Aliment 41, 1–7 (2012)CrossRefGoogle Scholar
  30. 30.
    H.Y. Zhang, M.T. Apaliya, G.K. Mahunu, L.L. Chen, W.H. Li, Trends Food Sci. Technol. 51, 88–97 (2016)CrossRefGoogle Scholar
  31. 31.
    Z. Péteri, J. Téren, C. Vágvölgyi, J. Varga, Food Microbiol. 24, 205–210 (2007)CrossRefGoogle Scholar
  32. 32.
    X. Zhang, Z. Lin, A.M. Tibiru, X. Gu, X. Zheng, L. Zhao, J. Microbiol. Biotechnol. 27(12), 2119–2128 (2017)CrossRefGoogle Scholar
  33. 33.
    F. De Curtis, D.V. De Felice, G. Ianiri, V. De Cicco, R. Castoria, Int. J. Food Microbiol. 159, 17–24 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Yiannikouris, J.P. Jouany, G. Bertin, Nutritional biotechnology in the feed and food industries. in Proceedings of Alltech’s 23rd Annual Symposium. The New Energy Crisis: Food, Feed or Fuel? (Stamford, Alltech, 2007), pp. 11–19.Google Scholar
  35. 35.
    J. Gil-Serna, B. Patino, L. Cortes, M.T. Gonzalez-Jaen, C. Vazquez, Int. J. Food Microbiol. 51, 113–118 (2011)CrossRefGoogle Scholar
  36. 36.
    L. Afsah-Hejri, S. Jinap, H. Mirhosseini, Food Control 23, 113–119 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joseph Ahima
    • 1
    • 2
  • Hongyin Zhang
    • 1
    Email author
  • Maurice Tibiru Apaliya
    • 3
  • Xiaoyun Zhang
    • 1
  • Qiya Yang
    • 1
  • Lina Zhao
    • 1
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Koforidua Technical UniversityKoforiauaGhana
  3. 3.Department of Agriculture for Social ChangeRegentropfen College of Applied Sciences, PMBBolgatangaGhana

Personalised recommendations