Advertisement

Microwave-assisted extraction of total saponins from Physalis alkekengi L. var. franchetii (Mast.) Makino and their in vitro anti-inflammatory activity

  • Wenjie Gao
  • Feng Chen
  • Hongquan Li
  • Xiaowen Wang
  • Qingran MengEmail author
Original Paper
  • 4 Downloads

Abstract

In this study, the optimization of microwave-assisted extraction of total saponins from P. alkekengi (TSP) and in vitro anti-inflammatory activity were discussed. According to the results in Box–Behnken design, the nonlinear regression model obtained from the Design-Expert software was a reasonable fit for the experiment data (R2 = 0.9994). Results showed that the optimal extraction conditions with a yield of 6.41 ± 0.25 mg/g for crude TSP extraction were aqueous ethanol (80%) to raw material ratios of 32:1 (mL:g), extraction power of 300 W, and extraction time of 29 min. The content of the total saponins in the purified extract was 91.32 ± 1.57%. Bioassay indicated that TSP could significantly inhibited the release of nitric oxide (NO), interleukin-6 (IL-6), and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS) in a dose-dependent manner, and down-regulated the expressions of related genes. In addition, TSP treatment could also suppress the elevated cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) gene expression in LPS-induced RAW 264.7. Moreover, the secretions of monocyte chemoattractant protein-1 (MCP-1) in stimulated macrophages were also restrained in a concentration-dependent way. All these results indicated that TSP exhibited anti-inflammatory effects by suppressing the transcription of some inflammatory cytokine genes, suggesting that the anti-inflammatory properties of TSP may be helpful to mitigate inflammatory diseases as well as some other related diseases. The overall results indicated that TSP had potential as anti-inflammatory lead compounds for follow-up research.

Keywords

Physalis alkekengi L. var. franchetii Saponins Extraction optimization Anti-inflammatory activity 

Notes

Acknowledgements

This study was supported by the grants from the Shanxi Science and Technology Department (Grant Nos. 2015081024, 20150311020-2) and the China Scholarship Council (Grant No. 201706790044).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    X. Li, J. Zhao, M. Yang, Y. Liu, Z. Li, R. Li, X. Li, N. Li, Q. Xu, I.A. Khan, S. Yang, Phytochem. Lett. 10, 95 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Helvaci, G. Kokdil, M. Kawai, N. Duran, G. Duran, A. Guvenc, Pharm. Biol. 48, 141 (2010)CrossRefGoogle Scholar
  3. 3.
    A.L. Li, B.J. Chen, G.H. Li, M.X. Zhou, Y.R. Li, D.M. Ren, H.X. Lou, X.N. Wang, T. Shen, J. Ethnopharmacol. 210, 260 (2018)CrossRefGoogle Scholar
  4. 4.
    N. Rasheed, M. Shareef, M. Ahmad, V. Gupta, S. Arfin, A. Shamshad, Pharmacogn. J. 2, 464 (2010)CrossRefGoogle Scholar
  5. 5.
    L. Qiu, F. Zhao, Z.H. Jiang, L.X. Chen, Q. Zhao, H.X. Liu, X.S. Yao, F. Qiu, J. Nat. Prod. 71, 642 (2008)CrossRefGoogle Scholar
  6. 6.
    Y. Ge, Y. Duan, G. Fang, Y. Zhang, S. Wang, Carbohydr. Polym. 77, 188 (2009)CrossRefGoogle Scholar
  7. 7.
    L.M. Coussens, Z. Werb, Nature 420, 860 (2002)CrossRefGoogle Scholar
  8. 8.
    J.K. Kim, S. Oh, H.S. Kwon, Y.S. Oh, S.S. Lim, H.K. Shin, Biochem. Biophys. Res. Commun. 345, 1215 (2006)CrossRefGoogle Scholar
  9. 9.
    E.M. Shin, H.Y. Zhou, L.Y. Guo, J.A. Kim, S.H. Lee, I. Merfort, S.S. Kang, H.S. Kim, S. Kim, Y.S. Kim, Int. Immunopharmacol. 8, 1524 (2008)CrossRefGoogle Scholar
  10. 10.
    K. Taniguchi, M. Karin, NF-κB. Nat. Rev. Immunol. 18, 309 (2018)CrossRefGoogle Scholar
  11. 11.
    M.L. Falsetta, D.C. Foster, C.F. Woeller, S.J. Pollock, A.D. Bonham, D. Piekna-Przybylska, S.B. Maggirwar, C.G. Haidaris, R.P. Phipps, J. Lower Genit. Tract Dis. 22, 52 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Lesjak, I. Beara, N. Simin, D. Pintać, T. Majkić, K. Bekvalac, D. Orčić, N. Mimica-Dukić, J. Funct. Foods 40, 68 (2018)CrossRefGoogle Scholar
  13. 13.
    V. Karuppagounder, S. Arumugam, R.A. Thandavarayan, R. Sreedhar, V.V. Giridharan, K. Watanabe, Drug Discov. Today 21, 632 (2018)CrossRefGoogle Scholar
  14. 14.
    L. Zitvogel, F. Pietrocola, G. Kroemer, Nat. Immunol. 18, 843 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Moniruzzaman, S. Bose, Y.-M. Kim, Y.-W. Chin, J. Cho, J. Ethnopharmacol. 181, 26 (2016)CrossRefGoogle Scholar
  16. 16.
    J.-M. Hong, O.-K. Kwon, I.-S. Shin, H.-H. Song, N.-R. Shin, C.-M. Jeon, S.-R. Oh, S.-B. Han, K.-S. Ahn, Immunobiology 220, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Lacaille-Dubois, H. Wagner, Phytomedicine 2, 363 (1996)CrossRefGoogle Scholar
  18. 18.
    M.T. Ale, J.D. Mikkelsen, A.S. Meyer, Mar. drugs 9, 2106 (2011)CrossRefGoogle Scholar
  19. 19.
    P. Zhou, X. Wang, P. Liu, J. Huang, C. Wang, M. Pan, Z. Kuang, Ind. Crop. Prod. 120, 147 (2018)CrossRefGoogle Scholar
  20. 20.
    Q. Meng, Y. Wang, F. Chen, T. Xiao, L. Zhang, Int. J. Biol. Macromol. 115, 835 (2018)CrossRefGoogle Scholar
  21. 21.
    B. Singh, J.P. Singh, N. Singh, A. Kaur, Food Chem. 233, 540 (2017)CrossRefGoogle Scholar
  22. 22.
    G. Francis, Z. Kerem, H.P.S. Makkar, K. Becker, Brit. J. Nutr. 88, 587 (2002)CrossRefGoogle Scholar
  23. 23.
    Y. Qian, Q.-H. Han, L.-C. Wang, Q. Guo, X.-D. Wang, P.-F. Tu, K.-W. Zeng, H. Liang, J. Ethnopharmacol. 221, 20 (2018)CrossRefGoogle Scholar
  24. 24.
    S.A. Wani, S. Bishnoi, P. Kumar, J. Food Meas. Charact. 10, 527 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Li, Y.-G. Zu, Y.-J. Fu, Y.-C. Yang, S.-M. Li, Z.-N. Li, M. Wink, Innov. Food Sci. Emerg. 11, 637 (2010)CrossRefGoogle Scholar
  26. 26.
    C.S. Eskilsson, E. Björklund, J. Chromatogr. A 902, 227 (2000)CrossRefGoogle Scholar
  27. 27.
    Y. Chen, M.Y. Xie, X.F. Gong, J. Food Eng. 81, 162 (2007)CrossRefGoogle Scholar
  28. 28.
    Y. Yuan, D. Macquarrie, Carbohydr. Polym. 129, 101 (2015)CrossRefGoogle Scholar
  29. 29.
    C.Y. Gan, A.A. Latiff, Carbohydr. Polym. 83, 600 (2011)CrossRefGoogle Scholar
  30. 30.
    T.S. Ballard, P. Mallikarjunan, K. Zhou, S. O’Keefe, Food Chem. 120, 1185 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Nag, N. Sit, J. Food Meas. Charact. 12, 1 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Gordon, P.R. Taylor, Nat. Rev. Immunol. 5, 953 (2005)CrossRefGoogle Scholar
  33. 33.
    J. Van den Bossche, L.A. O’Neill, D. Menon, Trends Immunol. 38, 395 (2017)CrossRefGoogle Scholar
  34. 34.
    S.H. Lee, C.H. Kwak, S.K. Lee, S.H. Ha, J. Park, T.W. Chung, K.T. Ha, S.J. Suh, Y.C. Chang, H.W. Chang, J. Cell. Biochem. 117, 978 (2016)CrossRefGoogle Scholar
  35. 35.
    R.M. Palmer, D. Ashton, S. Moncada, Nature 333, 664 (1988)CrossRefGoogle Scholar
  36. 36.
    G. Nagy, J.M. Clark, E.I. Buzás, C.L. Gorman, A.P. Cope, Immunol. Lett. 111, 1 (2007)CrossRefGoogle Scholar
  37. 37.
    J.O. Lundberg, M. Carlström, E. Weitzberg, Cell Metab. 28, 9 (2018)CrossRefGoogle Scholar
  38. 38.
    T. Hirano, S. Ohkouchi, N. Tode, M. Kobayashi, M. Ono, T. Satoh, Y. Mitsuishi, A. Watanabe, M. Tabata, T. Irokawa, ERJ Open Res. 4, 1 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Dong, L. Yin, R. Chen, Y. Zhang, S. Hua, H. Quan, X. Fu, Gene 675, 94 (2018)CrossRefGoogle Scholar
  40. 40.
    N. Chandrasekharan, H. Dai, K.L.T. Roos, N.K. Evanson, J. Tomsik, T.S. Elton, D.L. Simmons, P. Natl, Acad. Sci. U.S.A. 99, 13926 (2002)CrossRefGoogle Scholar
  41. 41.
    D.A. Willoughby, A.R. Moore, P.R. Colville-Nash, Lancet 355, 646 (2000)CrossRefGoogle Scholar
  42. 42.
    M.B. Labib, S.M.Z. Sharkawi, M. El-Daly, Bioorg. Chem. 80, 70 (2018)CrossRefGoogle Scholar
  43. 43.
    J.H. Kang, I.H. Han, M.K. Sung, H. Yoo, Y.G. Kim, J.S. Kim, T. Kawada, R. Yu, Cancer Lett. 261, 84 (2008)CrossRefGoogle Scholar
  44. 44.
    S. Hu, C. Marshall, J. Darby, W. Wei, A.B. Lyons, H. Körner, Front. Immunol. 9, 1 (2018)CrossRefGoogle Scholar
  45. 45.
    D. Moris, E. Felekouras, G.P. Chrousos, Ann. Surg. 267, 30 (2018)CrossRefGoogle Scholar
  46. 46.
    J.Y. Zhang, H. Jin, G.F. Wang, P.J. Yu, S.Y. Wu, Z.G. Zhu, Z.H. Li, Y.X. Tian, W. Xu, J.J. Zhang, Inflamm. Res. 60, 851 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiPeople’s Republic of China
  2. 2.Department of Landscape ArchitectureNortheast Forestry UniversityHarbinPeople’s Republic of China
  3. 3.College of Food Science and EngineeringShanxi Agricultural UniversityTaiguPeople’s Republic of China
  4. 4.Department of Food Nutrition and Packaging SciencesClemson UniversityClemsonUSA
  5. 5.College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguPeople’s Republic of China

Personalised recommendations