Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2894–2902 | Cite as

Extraction of phenolic antioxidants from Pyrus elaeagrifolia Pallas: process optimization, investigation of the bioactivity and β-glucuronidase inhibitory potential

  • Dilek Demirbuker KavakEmail author
  • Sevgi Kececi
Original Paper

Abstract

This study aimed to develop a mathematical model for the extraction of Pyrus elaeagrifolia Pallas leaves using the Box–Behnken design, to investigate bioactivity and bacterial β-glucuronidase (GUS) inhibitory potential of the extracts obtained under optimum conditions. Results showed that the mathematical models using extraction temperature, time and ethanol concentration as effective parameters fit the real data well. The optimum extraction conditions to maximize phenolic content and antioxidant activity were found 79.7 and 78.4% ethanol, 74.9 °C, and 45.0 and 35.9 min, respectively. The chlorogenic acid was detected as the major phenolic compound in the chromatographic analysis. The highest antibacterial activity achieved against Staphylococcus aureus. The extracts (150 μg/mL) showed 67.9%, and 75.2% cytotoxic effect on the MCF-7 and A549 cells, respectively, and displayed inhibitory potential against GUS. The antioxidant property together bioactivity makes Pyrus elaeagrifolia Pallas leaves potent source for functional food/food ingredient applications and nutraceutical development.

Keywords

Pyrus elaeagrifolia Optimization β-Glucuronidase Box–Behnken Bioactivity 

Notes

Acknowledgements

The authors gratefully acknowledge the Afyon Kocatepe University Scientific Research Projects Commission (Project No: 12.TEMATIK.05).

Supplementary material

11694_2019_210_MOESM1_ESM.docx (14 kb)
Supplementary file1 (DOCX 13 kb)

References

  1. 1.
    A. Aygun, H. Dumanoglu, Front. Plant Sci. 6, 1 (2015)CrossRefGoogle Scholar
  2. 2.
    K.H. Lee, J.Y. Cho, H.J. Lee, Y.K. Ma, J. Kwon, S.H. Park et al., J. Agric. Food Chem. 59, 10124 (2011)PubMedCrossRefGoogle Scholar
  3. 3.
    F. Peng, C. Cheng, Y. Xie, Y. Yang, Food Sci. Technol. Res. 21, 463 (2015)CrossRefGoogle Scholar
  4. 4.
    L.Z. Lin, J.M. Harnly, J. Agric. Food. Chem. 56, 9094 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    K. Sharma, V. Pasricha, G. Satpathy, K. Rajinder, J. Pharmacogn. Phytochem. 3, 46 (2015)Google Scholar
  6. 6.
    M.E. Shahaboddin, M. Pouramir, A.A. Moghadamnia, H. Parsian, M. Lakzaei, H. Mir, Food Chem. 126, 1730 (2011)PubMedCrossRefGoogle Scholar
  7. 7.
    T. Kundaković, A. Ćirić, T. Stanojković, M. Soković, N. Kovačević, Afr. J. Microbiol. Res. 8, 511 (2014)Google Scholar
  8. 8.
    M. Vinceković, M. Viskić, S. Jurić, J. Giacometti, B. Kovačević et al., Trends Food Sci. Technol. 69, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    D. Djenane, D. Gómez, J. Yangüela, P. Roncalés, A. Ariño, Foods. 8, 1 (2019).  https://doi.org/10.3390/foods8010010 CrossRefGoogle Scholar
  10. 10.
    N. Nikmaram, S. Budaraju, F.J. Barba, J.M. Lorenzo, R.B. Cox, K. Mallikarjunan, S. Roohinejad, Meat Sci. 145, 245 (2018)PubMedCrossRefGoogle Scholar
  11. 11.
    C. Nerín, L. Tovar, D. Djenane, J. Camo, J. Salafranca, J.A. Beltrán, P. Roncalés, J. Agric. Food Chem. 54, 7840 (2006).  https://doi.org/10.1021/jf060775c CrossRefPubMedGoogle Scholar
  12. 12.
    J. Camo, D. Djenane, J.A. Beltrán, P. Roncalés, Meat Sci. 88, 174 (2011).  https://doi.org/10.1016/j.meatsci.2010.12.019 CrossRefPubMedGoogle Scholar
  13. 13.
    M.M. Cowan, Clin. Microbiol. Rev. 12, 564 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    D. Djenane, M. Aïder, J. Yangüela, L. Idir, D. Gómez, P. Roncalés, Meat Sci. 92, 667 (2012).  https://doi.org/10.1016/j.meatsci.2012.06.019 CrossRefPubMedGoogle Scholar
  15. 15.
    D. Djenane, J. Yanguela, L. Montañés, M. Djerbal, P. Roncalès, Food Control 22, 1046 (2011).  https://doi.org/10.1016/j.foodcont.2010.12.015 CrossRefGoogle Scholar
  16. 16.
    S. Burt, Int. J. Food Microbiol. 94, 223 (2004)PubMedCrossRefGoogle Scholar
  17. 17.
    A. Jafari, M.M. Aslani, S. Bouzari, Iran. J. Microbiol. 4, 102 (2012)Google Scholar
  18. 18.
    D.D. Kavak, E. Altıok, O. Bayraktar, S. Ülkü, J. Mol. Catal B. 64, 167 (2010)CrossRefGoogle Scholar
  19. 19.
    B. Goldin, S.L. Gorbach, Cancer 40, 2421 (1977)PubMedCrossRefGoogle Scholar
  20. 20.
    A. De-Moreno, A. De-Leblanc, G. Perdigon, Biocell. 29, 15 (2005)Google Scholar
  21. 21.
    C.S. Joshi, E.S. Priya, Pharm. Biol. 45, 363 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Karak, G. Nag, B. De, Rev Bras Farmacogn. 27, 105 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Wu, X. Wang, J. Xue, E.J. Fan, J. Food Sci. 82, 2726 (2017)PubMedCrossRefGoogle Scholar
  24. 24.
    M.C. Romero, R.A. Fogar, M.M. Doval, A.M. Romero, M.A. Judis, J Food Meas Charact. 1, 1–10 (2019).  https://doi.org/10.1007/s11694-019-00109-4 CrossRefGoogle Scholar
  25. 25.
    M. Radojkovic, Z. Zekovic, S. Jokic, S. Vidovic, Rom Biotech Lett. 17, 7295 (2012)Google Scholar
  26. 26.
    S. Karasu, Y. Bayram, K. Ozkan, O. Sagdic, J Food Meas Charact. 1, 1–10 (2019).  https://doi.org/10.1007/s11694-019-00067-x CrossRefGoogle Scholar
  27. 27.
    E. Nakilcioğlu-Taş, S. Ötleş, J Food Meas Charact. 1, 1–10 (2019).  https://doi.org/10.1007/s11694-019-00065-z CrossRefGoogle Scholar
  28. 28.
    G. Spigno, D.M. De-Faveri, J Food Eng. 78, 793 (2007)CrossRefGoogle Scholar
  29. 29.
    L. Samuagam, C.M. Sia, G.A. Akowuah, P.N. Okechukwu, H.S. Yim, Health Environ J. 4, 80 (2013)Google Scholar
  30. 30.
    D.D. Kavak, Am-Eurasian J Sustain Agric. 11, 1 (2017)Google Scholar
  31. 31.
    B. Akdeniz, D.D. Kavak, Sci Res Essays. 7, 477 (2012)Google Scholar
  32. 32.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Methods Enzymol. 299, 152 (1999)CrossRefGoogle Scholar
  33. 33.
    F. Caponio, V. Alloggioa T. Gomes, Food Chem. 64, 203 (1999)Google Scholar
  34. 34.
    A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck, Am J Clin Pathol. 454, 493 (1966)CrossRefGoogle Scholar
  35. 35.
    C. Sekikawa, H. Kurihara, K. Goto, K. Takahashi, Hokkaido Bull Fac Fish. 53, 27 (2002)Google Scholar
  36. 36.
    D.D. Kavak, S. Ülkü, Process Biochem. 50, 221 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Surveswaran, Y.Z. Cai, H. Corke, M. Sun, Food Chem. 102, 938 (2007)CrossRefGoogle Scholar
  38. 38.
    V. Janovik, A.A. Boligon, R.V. Bandeira, M.L. Athayde, Res. J. Phytochem. 5, 209 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Serafini, A. Ghiselli, A. Ferroluzzi, Lancet 344, 626 (1994)PubMedCrossRefGoogle Scholar
  40. 40.
    M.H. Majd, i A. Rajae, D.S. Bashi, S.A. Mortazavi, S. Bolourian, Ind Crop Prod. 57, 195 (2014)Google Scholar
  41. 41.
    M. Ya-Qin, C. Jian-Chu, Ultrason Sonochem. 16, 57 (2009)CrossRefGoogle Scholar
  42. 42.
    M.A. Rostagno, M. Palma, C.G. Barroso, Anal Chim Acta. 522, 169 (2004)CrossRefGoogle Scholar
  43. 43.
    Y.F. Shang, S.M. Kim, B.H. Um, Food Chem. 154, 164 (2014)PubMedCrossRefGoogle Scholar
  44. 44.
    J. Dong, Y. Liu, Z. Liang, W. Wang, Ultrason Sonochem. 17, 61 (2010)PubMedCrossRefGoogle Scholar
  45. 45.
    A. Schieber, P. Keller, R. J. Carle Chromatogr A. 910, 265 (2001)CrossRefGoogle Scholar
  46. 46.
    C., Andreotti, G. Costa, D. Treutter, Sci Hortic. 109, 130 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Meng, J. Cao, Q. Feng, J. Peng, H. Yiyang, Evid Based Complement. Altern. Med. 2013, 1 (2013)Google Scholar
  48. 48.
    M.R.P. Rani, A. Nair, S. Mohan, K.G. Raghu, Biomed Pharmacother. 100, 467 (2018)CrossRefGoogle Scholar
  49. 49.
    P. Migas, M. Krauze-Baranowska, Phytochem. Lett. 13, 35 (2015)CrossRefGoogle Scholar
  50. 50.
    J. Takebayashi, R. Ishii, J. Chen, T. Matsumoto, Y. Ishimi, A. Tai, Free Radical Res. 44, 473 (2010)CrossRefGoogle Scholar
  51. 51.
    S. Sang, J.D. Lambert, C.T. Ho, C.S. Yang, Pharmacol. Res. 64, 87 (2011)PubMedCrossRefGoogle Scholar
  52. 52.
    S. Jin, N. Sato, Phytochemistry 62, 101 (2003)PubMedCrossRefGoogle Scholar
  53. 53.
    S. Saklani, S. Chandra, Int. J. Pharm. Sci. Res. 3, 268 (2012)Google Scholar
  54. 54.
    F.M. Campos, J.A. Couto, T.A. Hogg, J. Appl. Microbiol. 94, 167 (2003)PubMedCrossRefGoogle Scholar
  55. 55.
    T. Taguri, T. Tanaka, I. Kouno, Biol. Pharm. Bull. 27, 1965 (2004)PubMedCrossRefGoogle Scholar
  56. 56.
    F. Mendel, Mol. Nutr. Food. Res. 51, 116 (2007)CrossRefGoogle Scholar
  57. 57.
    J. Rafter, M. Govers, P. Martel, D. Pannemans, B. Pool-Zobel, G. Rechkemmer et al., Eur. J. Nutr. 2, 47 (2004)CrossRefGoogle Scholar
  58. 58.
    J.W. Lampe, S.S. Li, J.D. Potter, I.B. King, J Nutr. 132, 1341 (2002).  https://doi.org/10.1093/jn/132.6.1341 CrossRefPubMedGoogle Scholar
  59. 59.
    M. Mroczynska, Z. Libudzisz, Pol. J. Microbiol. 59, 265 (2010)PubMedGoogle Scholar
  60. 60.
    N. Seyfizadeh, S. Mahjoub, E. Zabihi, A.A. Moghadamnia, M. Pouramir, H. Mir, M. Khosravifarsani, F. Elahimanesh, World Appl. Sci. J. 19, 163 (2012)Google Scholar
  61. 61.
    K.C. Chen, H.H. Chang, W.S. Ko, C.L. Wu, W.T. Hsieh, C.L. Peng, Egypt Dermatol. Online J. 5, 1 (2009)Google Scholar
  62. 62.
    S.Y. Jun, K.M. Park, K.W. Choi, M.K. Jang, H.Y. Kang, S.H. Lee, K.H. Park, J. Cha, Biotechnol Lett. 30, 743 (2008)PubMedCrossRefGoogle Scholar
  63. 63.
    I. Berdowska, B. Zieliński, I. Fecka, J. Kulbacka, J. Saczko, A. Gamian, Food Chem. 141, 1313 (2013)PubMedCrossRefGoogle Scholar
  64. 64.
    R. Xu, Q. Kang, J. Ren, Z. Li, X. Xu, J. Anal. Methods Chem. 95, 13 (2013)Google Scholar
  65. 65.
    A. Belkaid, J.C. Currie, J. Desgagnes, B. Annabi, Cancer Cell Int. 6, 7 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    C.S. Yang, H. Wang, G.X. Li, Z. Yang, F. Guan, H. Jin, Pharmacol. Res. 64, 113 (2011)PubMedCrossRefGoogle Scholar
  67. 67.
    J.V. Higdon, B. Frei, Crit. Rev. Food Sci. Nutr. 43, 89 (2003)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Food Engineering Department, Engineering FacultyAfyon Kocatepe UniversityAfyonkarahisarTurkey

Personalised recommendations