Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2871–2886 | Cite as

Physicochemical, physiological and anatomical properties of three segments of peach palm for industrial use and minimal processing

  • Kelem Silva FonsecaEmail author
  • Anderson Adriano Martins Melo
  • Alexandre Maniçoba da Rosa Ferraz Jardim
  • Aline Ellen Duarte de Sousa
  • Milton Edgar Pereira-Flores
  • Marilia Contin Ventrella
  • Adriano do Nascimento Simões
  • Rolf Puschmann
Original Paper


Peach palm has regions adjacent to the heart-of-palm that are normally neglected by the industry, and have potential to be utilized in minimally processed form. We characterized three parts of peach palm, evaluating anatomical, physicochemical and physiological parameters aiming to increase the industrial yield and evaluate shelf-life of the fresh-cut product. Harvested rods were sectioned into apical, median and basal segments, and analyzed for yield, firmness, soluble solids, titratable acidity, vitamin C, sugars and starch. Segments were sampled for anatomy and measurement of ethylene and respiration rates. After fresh-cut operations, segments were stored for 15 days at 5 °C and evaluated for surface color and carbohydrate content. The total yield based on length and fresh-mass was 85% and 70%, respectively. Hearts of palm were firmer toward the edges of apical and basal regions; the median region was the softest (14 N). The median region showed the highest SSC, 8.6 ºBrix and vitamin C, 9.4 mg ascorbic acid 100 g−1 FW, and maintained the highest ethylene production, either whole or sliced. Respiration rate of all regions decreased 1 h after segmentation, the apical region showed the highest rate, 364 mL CO2 kg−1 h−1, followed by median and basal. Yellowing and pronounced color difference occurred after two weeks of storage in all the studied regions. Partially differentiated vascular bundles were present in all regions. Based on firmness and chemical parameters, all regions have potential for use as minimally processed product and can be stored up to 7 days, maintaining the original color.


Pupunha Bactris gasipaes Ethylene Respiration rate Firmness Fresh-cut 



  1. 1.
    C.R. Clement, J. Mora Urpí, Leaf morphology of the Pejibaye palm (Bactris gasipaes H.B.K.). Rev. Biol. Trop. 31, 103 (1983)Google Scholar
  2. 2.
    S. Graefe, D. Dufour, M. Van Zonneveld, F. Rodriguez, A. Gonzalez, Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition. Biodivers. Conserv. (2013). CrossRefGoogle Scholar
  3. 3.
    L.C. Anefalos, L.M.S. Tucci, V.A. Modolo, Uma visão sobre a pupunheira no contexto do mercado de palmito: análises e indicadores do agronegócio. Anál. Indic. Agronegócio 2, 7 (2007)Google Scholar
  4. 4.
    H Villachica (1996) Pijuayo (Bactris gasipaes H.B.K.). In: H Villachica (ed) Frutales y hortalizas promisorios de la Amazonia. TCA, Lima.Google Scholar
  5. 5.
    L.C. Sampaio, S.N.O. Neto, P.S.S. Leles, J.A. Silva, E.B. Villa, Análise técnica e econômica da produção de palmito de Pupunha (Bactris gasipaes Kunth) e de palmeira-real (Archontophoenix alexandrae Wendl. & Drude). Floresta Ambient. 14, 1 (2007)Google Scholar
  6. 6.
    L.M. Araújo, Aproveitamento industrial e caracterização físico-química de palmito de Pupunha (Bactris gasipaes H.B.K.). Masters Thesis, Instituto Nacional de Pesquisa da Amazonia, INPA, (1993)Google Scholar
  7. 7.
    C.R. Clement, R.M. Manshardt, C.G. Cavaletto, J DeFrank, J MoodJr, NY Nagai, K Fleming, F Zee (1996) Pejibaye heart-of-palm in Hawaii: from introduction to market. In: J Janick (ed) Progress in New Crops. American Society for Horticultural Science, Arlington, VA.Google Scholar
  8. 8.
    J. Mora-Urpí, J.C. Weber, C.R. Clement, Peach Palm (Bactris gasipaes Kunth): Promoting the Conservation and Use of Underutilized and Neglected Crops (International Plant Genetics Resources Institute, Rome, Italy, 1997)Google Scholar
  9. 9.
    DS Raupp, EA Staron, FCC Almeida, NS Onuki, FP Chaimsohn, AV Borsato (2004) Produção de farelo alimentar fibroso da parte caulinar do palmito Pupunha (Bactris gasipaes). UEPG Ci. Exatas Terra Ci. Agr. Eng. 6, 26. CrossRefGoogle Scholar
  10. 10.
    H.M. Húngaro, V.O. Alvarenga, W.E.L. Peña, A.S. Sant'Ana, Hearts of palms preserves and botulism in Brazil: an overview of outbreaks, causes and risk management strategies. Trends Food Sci. Technol. (2013). CrossRefGoogle Scholar
  11. 11.
    F.P. Chaimsohn, Cultivo de pupunha e produção de palmito (Editora UFV, Viçosa, Brazil, 2000)Google Scholar
  12. 12.
    Y.K. Hojeije, APPCC no plantio e na industrialização do palmito: Necessidade ou obrigação? Hig. Aliment. 20, 139 (2006)Google Scholar
  13. 13.
    G.P.C. Kalil, A.N. KalilFilho, L. Franciscon, Avaliação da qualidade do palmito in natura de duas populações de pupunha durante a vida de prateleira. Pesq. Flor. Bras. (2010). CrossRefGoogle Scholar
  14. 14.
    C. Ghidelli, M.B. Pérez-Gago, Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Crit Rev Food Sci Nutr. (2018). CrossRefPubMedGoogle Scholar
  15. 15.
    M.I. Gil, E. Aguayo, A.A. Kader, Quality changes and nutrient retention in fresh-cut versus whole fruits during storage. J. Agric. Food Chem. (2006). CrossRefPubMedGoogle Scholar
  16. 16.
    B. Yousuf, O.S. Qadri, A.K. Srivastava, Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT (2018). CrossRefGoogle Scholar
  17. 17.
    H. Luo, L. Jiang, L. Zhang, J. Jiang, Z. Yu, Quality changes of whole and fresh-cut Zizania latifolia during refrigerated (1 C) storage. Food and Bioprocess Tech. (2012). CrossRefGoogle Scholar
  18. 18.
    B.B. Mishra, S. Gautam, A. Sharma, Browning of fresh-cut eggplant: Impact of cutting and storage. Postharvest Biol. Technol. (2012). CrossRefGoogle Scholar
  19. 19.
    S. R. T. Valentini, Conservação de toletes de palmito Pupunha (Bactris gasipaes Kunth.) "in natura" sob refrigeração e atmosfera modificada. Doctorate Dissertation, 2010Google Scholar
  20. 20.
    R. Wills, B. McGlasson, D. Graham, D. Joyce, Postharvest: and Introduction to the Physiology and Handling of Fruit, Vegetables and Ornamentals, 4th edn. (CAB International, New York, 1998)Google Scholar
  21. 21.
    N. Iqbal, N.A. Khan, A. Ferrante, A. Trivellini, A. Francini, M.I.R. Khan, Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front in Plant Sci. (2017). CrossRefGoogle Scholar
  22. 22.
    B.C. Bolanho, E.D.G. Danesi, A.P. Beléia, Peach palm (Bactris gasipaes Kunth) Characterization and the potential of by-products flour processing. Food. Sci. Technol. Res. (2013). CrossRefGoogle Scholar
  23. 23.
    J.M. Resende, O.J. Saggin Júnior, E.M.R. Silva, J.E. Flori, Palmito de pupunha in natura e em conserva (Brasília, DF, Embrapa Informação Tecnológica, 2009)Google Scholar
  24. 24.
    L.A.A. López, J.M.P. Vela, Manual práctico del cultivo de pijuayo para la producción de palmito en la zona del portal amazónico, Tarapoto (2010),
  25. 25.
    M.C. Botelho, S.C. Leme, L.C.O. Lima, S.H. Abrahão, H.H. Silqueira, A.B. Chitarra, Qualidade de palmito pupunha minimamente processado: aplicação de antioxidantes. Ciênc. Agrotec. (2010). CrossRefGoogle Scholar
  26. 26.
    Instituto Adolfo Lutz, Normas analíticas do Instituto Adolfo Lutz: Métodos físico-químicos para análise de alimentos, 4ed. Adolfo Lutz, São Paulo (2005),
  27. 27.
    D.A. Johansen, Plant Microtechnique, 1st edn. (McGraw Hill Book Company Inc, New York, 1940)Google Scholar
  28. 28.
    T.O. O’Brien, N. Feder, M.E. McCully, Polychromatic staining of plant cell walls by toluidine blue. Protoplasma. (1964). CrossRefGoogle Scholar
  29. 29.
    R. Kasim, M.U. Kasim, Biochemical changes and color properties of fresh-cut green bean (Phaseolus vulgaris L cv gina) treated with calcium chloride during storage. Food Sci. Technol. (2015). CrossRefGoogle Scholar
  30. 30.
    M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances. Anal. Chem. (1956). CrossRefGoogle Scholar
  31. 31.
    N. Nelson, A photometric adaptation of Somogyi method for determination of glucose. Biol. Chem. 153, 375 (1944)Google Scholar
  32. 32.
    R.M. McCready, J. Guggolz, V. Silviera, H.S. Owens, Determination of starch and amylase in vegetables. Anal. Chem. (1950). CrossRefGoogle Scholar
  33. 33.
    A.M. Mapeli, F.L. Finger, J.G. Barbosa, R.S. Barros, L.S. Oliveira, F.B. Segatto, Influence of storage temperature on Epidendrum ibaguense flowers. Acta Sci. Agron. (2011). CrossRefGoogle Scholar
  34. 34.
    D.F. Ferreira, Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciênc. Agrotec. (2014). CrossRefGoogle Scholar
  35. 35.
    A.J. RodriguesNeto, A.F. Bergamaschine, O.J. Isepon, J.B. Alves, F.B.T. Hernandez, M.P. Macedo, Efeito de Aditivos no Valor Nutritivo de Silagens feitas com Subproduto da Extração do Palmito de Pupunha (Bactris gasipaes H.B.K.). Rev. Bras. Zootec. (2001). CrossRefGoogle Scholar
  36. 36.
    A.G. Soares, Palmito de pupunha – alternativas de processamento. Hortic. Bras. 15, 198 (1997)Google Scholar
  37. 37.
    T.M. Magellan, P.B. Tomlinson, B.A. Huggett, Stem anatomy in the spiny American palm Bactris (Arecaceae-Bactridinae). Hoehnea. (2015). CrossRefGoogle Scholar
  38. 38.
    P.B. Tomlinson, Anatomy of the monocotyledons. II. Palmae (Clarendon Press, Oxford, 1961)Google Scholar
  39. 39.
    R.A. Pereira, K.E. Quadros, Comparação anatômica de palmitos em conserva de Archontophoenix alexandrae (F. Mueller) H. Wendl. et Drude e Bactris gasipaes H.B.K. (Arecaceae). Rev. Bras. Bioci. 5, 100 (2007)Google Scholar
  40. 40.
    C.R. Clement, L.A. Santos, J.S. Andrade, Conservação de palmito de Pupunha em atmosfera modificada. ACTA Amazon. (1999). CrossRefGoogle Scholar
  41. 41.
    M.C. Arruda, A.P. Jacomino, R.A. Kluge, M. Azzolini, Temperatura de armazenamento e tipo de corte para melão minimamente processado. Rev. Bras. Frutic. (2003). CrossRefGoogle Scholar
  42. 42.
    D. Zagory, Effects of post-processing handling and packaging on microbial populations. Postharvest Biol. Technol. (1999). CrossRefGoogle Scholar
  43. 43.
    M.A.M. Monteiro, P.C. Stringheta, D.T. Coelho, J.B.R. Monteiro, Estudo químico de alimentos formulados à base de palmito Bactris gasipaes HBK (pupunha) desidratado. Ciência Tecnol. Alim. (2002). CrossRefGoogle Scholar
  44. 44.
    A.A. Kader, Postharvest technology of horticultural crops, 3rd edn. (Oakland, ANRCS, 2002)Google Scholar
  45. 45.
    M Cantwell, TV Suslow (2002) Postharvest handling systems: Fresh-cut fruits and vegetables. In AA Kader (ed) Postharvest technology of horticultural crops. University of California, Division of Agriculture and Natural Resources, Oakland.Google Scholar
  46. 46.
    J. Guo, S. Wang, X. Yu, R. Dong, Y. Li, X. Mei, Y. Shen, Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol. (2018). CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    R. Zhai, J. Liu, F. Liu, Y. Zhao, L. Liu, C. Fang, H. Wang, X. Li, Z. Wang, F. Ma, L. Xu, Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biol. Technol. (2018). CrossRefGoogle Scholar
  48. 48.
    T. Boller, H. Kende, Regulation of wound ethylene synthesis in plants. Nature (1980). CrossRefGoogle Scholar
  49. 49.
    S. Shiomi, M. Yamamoto, T. Ono, K. Kakiuchi, J. Nakamoto, A. Nakatsuka, Y. Kubo, R. Nakamura, A. Inaba, H. Imaseki, cDNA cloning of ACC synthase and ACC oxidase genes in cucumber fruit and their differential expression by wounding and auxin. J. Jpn. Soc. Hort. Sci. (1998). CrossRefGoogle Scholar
  50. 50.
    M. Tatsuki, H. Mori, Rapid and transient expression of 1-aminocyclopropane-1-carboxylate synthase isogenes by touch and wound stimuli in tomato. Plant Cell Physiol. (1999). CrossRefPubMedGoogle Scholar
  51. 51.
    A.E. Watada, K. Abe, N. Yamuchi, Physiological activities of partially processed fruits and vegetables. Food Technol. 44, 116 (1990)Google Scholar
  52. 52.
    S. Sakr, M. Noubahni, A. Bourbouloux, J. Riesmeier, W.B. Frommer, N. Sauer, S. Delrot, Cutting, ageing and expression of plant membrane transporters. Biochim. Biophis. Acta. (1997). CrossRefGoogle Scholar
  53. 53.
    E. Katz, J. Riov, D. Weiss, E.E. Goldschmidt, The climacteric-like behaviour of young, mature and wounded citrus leaves. J. Exp. Bot. (2005). CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kelem Silva Fonseca
    • 1
    Email author
  • Anderson Adriano Martins Melo
    • 2
  • Alexandre Maniçoba da Rosa Ferraz Jardim
    • 1
  • Aline Ellen Duarte de Sousa
    • 3
  • Milton Edgar Pereira-Flores
    • 4
  • Marilia Contin Ventrella
    • 2
  • Adriano do Nascimento Simões
    • 1
  • Rolf Puschmann
    • 2
  1. 1.Departamento de Produção VegetalUniversidade Federal Rural de PernambucoSerra TalhadaBrazil
  2. 2.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Departamento de Produção Animal e VegetalUniversidade Federal do AmazonasManausBrazil
  4. 4.Departamento de Engenharia Agrícola e AmbientalUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations