Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2822–2827 | Cite as

Micro-rheological and micro-heterogeneity properties of soluble glutinous rice starch (SGRS) solutions studied by diffusing wave spectroscopy (DWS)

  • Jingyuan XuEmail author
  • Sean X. Liu
  • Veera M. Boddu
Original Paper


As a natural biopolymer, soluble glutinous rice starch (SGRS) is widely used in the food industry; and has better binding characteristics than dextrin. The micro-structural heterogeneity and micro-rheology of SGRS solutions were investigated by the novel technique diffusion wave spectroscopy (DWS). By comparing the mean-square displacement (MSD) of the microbeads imbedded in six concentrations of SGRS solutions, we found that the solutions exhibited nearly homogeneous behavior at ≤ 0.5%, but the material displayed a clear degree of heterogeneity at > 1%. Micro-rheology investigation revealed that SGRS solutions showed nearly perfect viscous behavior at ≤ 0.5%, but the property changed into viscoelastic one at > 1%. The magnitude of high-frequency viscoelastic moduli for the 3–5% SGRS solutions can be characterized by \(\left| {{\text{G}}^{ * } } \right|\) ∝ ω3/4, which is the semi-flexible polymer behavior. However, the magnitude of high-frequency viscoelastic moduli (\(\left| {{\text{G}}^{ * } } \right|\)) for the 7–10% SGRS solutions is proportional to ω1/2, which is the flexible polymer behavior. All micro-structural heterogeneity and micro-rheological property shifts occurred in relatively small concentration ranges.


Diffusing wave spectroscopy (DWS) Micro-rheology Soluble rice starch 



This work was financially supported by US Department of Agriculture, Agricultural Research Service.


  1. 1.
    D. Glittenbert, Polym. Sci. A 10, 165 (2012)Google Scholar
  2. 2.
    P. Laovachirasuwan, J. Peerapattana, V. Srijesdaruk, P. Chitropas, M. Otsuka, Colloids Surf. B 78, 30 (2010)CrossRefGoogle Scholar
  3. 3.
    D. Weitz, D.J. Pine, in Dynamic light scattering: the method and some applications, ed. by W. Brown (Oxford University Press, Oxford, 1993)Google Scholar
  4. 4.
    J. Xu, A. Palmer, D. Wirtz, Macromolecules 31, 6486 (1998)CrossRefGoogle Scholar
  5. 5.
    J. Xu, G.E. Inglett, S.X. Liu, V.M. Boddu, Food Biophys. 11, 339 (2016)CrossRefGoogle Scholar
  6. 6.
    T.G. Mason, Rheol. Acta. 39, 371 (2000)CrossRefGoogle Scholar
  7. 7.
    D. Xu, J. Zhang, Y. Cao, J. Wang, J. Xiao, LWT Food Sci. Technol. 66, 590 (2016)CrossRefGoogle Scholar
  8. 8.
    V. Massel, M. Alexander, M. Corredig, Food Biophys. 10, 57 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Rohart, C. Michon, J. Confiac, V. Bosc, Dairy. Sci. Technol. 96, 459 (2016)Google Scholar
  10. 10.
    G. Maret, P.E. Wolf, Z. Phys. B. Con. Mat. 65, 409 (1987)CrossRefGoogle Scholar
  11. 11.
    T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995)CrossRefGoogle Scholar
  12. 12.
    J. Xu, V. Viasnoff, D. Wirtz, Rheol. Acta. 37, 387 (1998)CrossRefGoogle Scholar
  13. 13.
    J. Xu, J.A. Bietz, F.C. Felker, C.J. Carriere, D. Wirtz, Cereal Chem. 78, 181 (2001)CrossRefGoogle Scholar
  14. 14.
    J. Xu, A.A. Mohamed, M.P. Hojilla-Evangelista, D.J. Sessa, Am. J. Food Technol 3, 294 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Xu, A.A. Mohamed, D.J. Sessa, Int. J. Agric. Res. 3, 317 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Xu, G.E. Inglett, D. Chen, S.X. Liu, Food Chem. 138, 186 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Xu, Y. Tseng, C.J. Carriere, D. Wirtz, Biomacromolecules 3, 92 (2002)CrossRefGoogle Scholar
  18. 18.
    A. Palmer, J. Xu, D. Wirtz, Rheol. Acta. 37, 97 (1998)CrossRefGoogle Scholar
  19. 19.
    Q. Ying, B. Chu, Macromolecules 20, 362 (1987)CrossRefGoogle Scholar
  20. 20.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York, 1980)Google Scholar
  21. 21.
    D.C. Morse, Phys. Rev. E. 58, R1237 (1998)CrossRefGoogle Scholar
  22. 22.
    D.C. Morse, Macromolecules 31, 7030 (1998)CrossRefGoogle Scholar
  23. 23.
    D.C. Morse, Macromolecules 31, 7044 (1998)CrossRefGoogle Scholar
  24. 24.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, London, 1986)Google Scholar
  25. 25.
    F. Gittes, B. Schnurr, P.D. Olmsted, F.C. MacKintosh, C.F. Schmidt, Phys. Rev. Lett. 79, 3286 (1997)CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.National Center for Agricultural Utilization Research, Agricultural Research ServiceUS Department of AgriculturePeoriaUSA

Personalised recommendations