Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2798–2811 | Cite as

Comparative study of the glucosinolate profiles in turnip from four agroclimatic zones of china and neighboring countries

  • Swastika Paul
  • Chang-An GengEmail author
  • Tong-Hua Yang
  • Yong-Ping Yang
  • Ji-Jun ChenEmail author
Original Paper
  • 5 Downloads

Abstract

Turnip (Brassica rapa) is an important crop cultivated all over the world. Glucosinolates as the characteristic constituents showed diverse bioactivities, especially for their anti-cancer and hepatoprotective effects. Plenty of investigation has revealed the glucosinolate contents and profiles in various Brassica vegetables (mainly on aerial parts), whereas their detailed comparison between different agroclimatic zones is rarely reported. This study aimed to make a comparison on the total glucosinolate contents (TGCs) and chemical profiles in 59 turnip landraces. The turnip tubers were obtained by collecting the seeds from four agroclimatic zones, Yunnan, Himalayas, Qinghai-Tibetan Plateau (QTP) and Xinjiang, around southwest China and sown in Jianshui County. The TGCs in turnip were high (TGCYunnan = 0.463 ± 0.020 mg g−1 d.w., TGCHimalaya = 0.498 ± 0.019 mg g−1 d.w.) in the middle elevation environments, and decreased in both lower elevation (TGCXinjiang = 0.273 ± 0.014 mg g−1 d.w.) and higher elevation (TGCQTP = 0.346 ± 0.021 mg g−1 d.w.) environments, which followed a hump-shaped pattern along the altitudinal gradient. According to the principal component analysis, the 59 investigated landraces were dissected into two clusters, Yunnan-Himalaya environment and Xinjiang-Qinghai Tibetan Plateau environment. Significant correlation was observed between the aboveground biomass and underground biomass (r = 0.653, p < 0.01), leaf length and tuber diameter (r = 0.448, p < 0.01), whereas the TGCs were neither correlated with the aboveground nor the underground biomass. A total of 18 constituents involving ten glucosinolates, three phenylpropanoids, one lignan and four sulfur compounds were characterized based on their MS/MS fragmentation and UV absorption. Gluconasturtiin (7) and glucobrassicanapin (4) were revealed as the main glucosinolates in turnip. The TGCs in turnip varied significantly (one sample t (297) = 34.859, P = 0.00) with different climatic zones, of which warm and humid climate [e.g. Yunnan and Himalaya areas (TGCwarm and humid = 0.467 ± 0.014 mg g−1 d.w.)] is profitable for the accumulation of glucosinolates, as compared to the arid and stressful environment [e.g. QTP and Xinjiang areas (TGCarid and stressful = 0.329 ± 0.014 mg g−1 d.w.)]. This investigation suggested that the glucosinolate profiles were closely related to the genes involved in regulating glucosinolate biosynthesis, herbivore pressure and vegetative growth.

Keywords

Agroclimatic zones Brassica rapa Chemical profiles Glucosinolates Turnip 

Notes

Acknowledgements

This work was supported by the CAS "Light of West China" Program (Western Youth Scholars "A"), the Program of Yunling Scholarship, the CAS Hundred Talents Program, the Youth Innovation Promotion Association CAS (2013252), and the Applied Basic Research Programs of Yunnan Province (2017FB137).

Author contributions

Swastika Paul performed the experiments and wrote the manuscript. Chang-An Geng, Tong-Hua Yang, Yong-Ping Yang and Ji-Jun Chen helped in supplying samples, technical guidance and writing.

Supplementary material

11694_2019_200_MOESM1_ESM.docx (4.1 mb)
Supplementary file1 (DOCX 4208 kb)

References

  1. 1.
    S. Gairola, J. Sharma, Y.S. Bedi, J. Ethnopharmacol. 155, 925 (2014)PubMedCrossRefGoogle Scholar
  2. 2.
    S. Ullah, M.R. Khan, N.A. Shah, S.A. Shah, M. Majid, M.A. Farooq, J. Ethnopharmacol. 158, 412 (2014)PubMedCrossRefGoogle Scholar
  3. 3.
    Q. Wu, M.H. Bang, J.G. Cho, D.Y. Lee, K.T. Lee, H.G. Chung, M.S. Choi, T.S. Jeong, E.M. Ahn, G.S. Kim, N.I. Baek, Chem. Nat. Compd. 49, 852 (2013)CrossRefGoogle Scholar
  4. 4.
    B.Q. Chu, C. Chen, J.J. Li, X.J. Chen, Y.H. Li, W.M. Tang, L. Jin, Y. Zhang, J. Ethnopharmacol. 195, 246 (2017)PubMedCrossRefGoogle Scholar
  5. 5.
    E.Y. Hong, G.H. Kim, Food Sci. Technol. Res. 14, 377 (2008)CrossRefGoogle Scholar
  6. 6.
    H.J. Choi, M.J. Han, N.I. Baek, D.H. Kim, H.G. Jung, N.J. Kim, Korean. J. Pharmacogn. 37, 258 (2006)Google Scholar
  7. 7.
    M.H. Bang, J.G. Cho, M.C. Song, D.Y. Lee, M.W. Han, H.G. Chung, T.S. Jeong, K.T. Lee, M.S. Choi, N.I. Baek, J Korean Soc. Appl. Biol. Chem. 51, 65 (2008)Google Scholar
  8. 8.
    M.E. Cartea, M. Francisco, P. Soengas, P. Velasco, Molecules 16, 251 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Paul, C.A. Geng, T.H. Yang, Y.P. Yang, J.J. Chen, J. Food Sci. 84, 19 (2018)PubMedCrossRefGoogle Scholar
  10. 10.
    P. Soengas, T. Sotelo, P. Velasco, M.E. Cartea, Funct. Plant Sci Biotechnol. 5, 43 (2011)Google Scholar
  11. 11.
    G.R. Fenwick, R.K. Heaney, W.J. Mullin, C.H. VanEtten, Crit. Rev. Food Sci. Nutr. 18, 123 (2009)CrossRefGoogle Scholar
  12. 12.
    J.H. Pan, B. Abernathy, Y.J. Kim, J.H. Lee, J.H. Kim, E.C. Shin, J.K. Kim, Crit. Rev. Food Sci. Nutr. 10, 1 (2017)Google Scholar
  13. 13.
    E.A.S. Rosa, R.K. Heaney, G.R. Fenwick, C.A.M. Portas, in Horticultural Review, ed. By J. Janick (Wiley, Hoboken, 1997), p. 99Google Scholar
  14. 14.
    R.M. Wallsgrove, K.J. Doughty, R.N. Bennett, in Plant Amino Acids: Biochemistry and Biotechnology, ed. by B.K. Singh (Marcel Dekker, New York, 1999), p. 523Google Scholar
  15. 15.
    R.J. Hopkins, N.M. van Dam, J.J. van Loon, Annu. Rev. Entomol. 54, 57 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    J. Metz, K. Ribbers, K. Tielborger, C. Muller, Environ. Exp. Bot. 105, 39 (2014)CrossRefGoogle Scholar
  17. 17.
    P.D. Coley, J.P. Bryant, F.S. Chapin, Science 230, 895 (1985)CrossRefGoogle Scholar
  18. 18.
    T. Brenes-Arguedas, P.D. Coley, T.A. Kursar, Ecology 90, 1751 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    D.F. Rhoades, in Herbivores: their interaction with secondary metabolites, ed. by G.A. Rosenthal, D.H. Janzen (Academic Press, New York, 1979), p. 1Google Scholar
  20. 20.
    M. Francisco, D.A. Moreno, M.E. Cartea, F. Ferreres, C. García-Viguera, P. Velasco, J. Chromatogr. A 1216, 6611 (2009)PubMedCrossRefGoogle Scholar
  21. 21.
    J.G. Lee, G. Bonnema, N. Zhang, J.H. Kwak, R.C. de Vos, J. Beekwilder, J. Agric. Food Chem. 61, 3984 (2013)PubMedCrossRefGoogle Scholar
  22. 22.
    G. Padilla, M.E. Cartea, P. Velasco, A. de Haro, A. Ordas, Phytochemistry 68, 536 (2007)PubMedCrossRefGoogle Scholar
  23. 23.
    H.Y. Ju, C. Chong, B.B. Bible, W.J. Mullin, Can. J. Plant Sci. 60, 1295 (1980)CrossRefGoogle Scholar
  24. 24.
    B. Yang, C.F. Quiros, Genet. Resour. Crop Evol. 57, 1079 (2010)CrossRefGoogle Scholar
  25. 25.
    S.A. Baek, Y.H. Jung, S.H. Lim, S.U. Park, J.K. Kim, J. Agric. Food Chem. 64, 4426 (2016)PubMedCrossRefGoogle Scholar
  26. 26.
    H. Shi, Y. Zhao, J. Sun, L. Yu, P. Chen, J. Food Compost. Anal. 61, 67 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Sun, M. Zhang, P. Chen, J. Agric. Food Chem. 64, 4407 (2016)PubMedCrossRefGoogle Scholar
  28. 28.
    M.J. Kim, Y.C. Chiu, K.M. Ku, J. Food Qual. 9, 1 (2017)Google Scholar
  29. 29.
    S.M. Bhandari, J.S. Jo, J.G. Lee, Molecules 20, 15827 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    J.D.J. Luna-Ruiz, G.P. Nabhan, A. Aguilar-Meléndez, Front. Ecol. Evol. 6, 48 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Basak, X. Sun, G. Wang, Y.P. Yang, Appl. Sci. 9, 253 (2019)CrossRefGoogle Scholar
  32. 32.
    A.B. Hanley, R.K. Heaney, G.R. Fenwick, J. Sci Food Agric. 34, 869 (1983)CrossRefGoogle Scholar
  33. 33.
    J.G. Zhang, C.A. Geng, X.Y. Huang, X.L. Chen, Y.B. Ma, X.M. Zhang, J.J. Chen, Eur J. Mass Spectrom. 23, 11 (2017)CrossRefGoogle Scholar
  34. 34.
    C.A. Geng, H. Chen, X.L. Chen, X.M. Zhang, L.G. Lei, J.J. Chen, Int. J. Mass Spectrom. 361, 9 (2014)CrossRefGoogle Scholar
  35. 35.
    X. Wang, Q. Jin, T. Wang, J. Huang, Y. Xia, L. Yao, X. Wang, Ann. Microbiol. 62, 1013 (2012)CrossRefGoogle Scholar
  36. 36.
    R.J. Hijmans, S.E. Cameron, J.L. Parra, P.G. Jones, A. Jarvis, Intl. J. Climatol. 25, 1965 (2005)CrossRefGoogle Scholar
  37. 37.
    S. Rasmann, L. Pellissier, E. Defossez, H. Jactel, G. Kunstler, Funct. Ecol. 28, 46 (2014)CrossRefGoogle Scholar
  38. 38.
    L. Pellissier, K. Fiedler, C. Ndribe, A. Dubuis, J.N. Pradervand, A. Guisan, S. Rasmann, Ecol. Evol. 2, 1818 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    I. Mewis, M.A.M. Khan, E. Glawischnig, M. Schreiner, C. Ulrichs, PLoS ONE 7, e48661 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    R.J. Robbins, A.S. Keck, G. Banuelos, J.W. Finley, J. Med. Food 8, 204 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    M. Schreiner, B. Beyene, A. Krumbein, H. Stutzel, J. Agric. Food Chem. 57, 7259 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    M.A.M. Khan, C. Ulrichs, I. Mewis, Entomol. Exp. Appl. 137, 229 (2010)CrossRefGoogle Scholar
  43. 43.
    A. Bouchereau, N. Clossais-Besnard, A. Bensaoud, L. Leport, M. Renard, Eur. J. Agron. 5, 19 (1996)CrossRefGoogle Scholar
  44. 44.
    A. Genet, H. Wernsdörfer, M. Jonard, H. Pretzsch, M. Rauch, Q. Ponette, C. Nys, A. Legout, J. Ranger, P. Vallet, For. Ecol. Manage. 261, 1188 (2011)CrossRefGoogle Scholar
  45. 45.
    Y.H. Chen, R. Gols, B. Benrey, Annu. Rev. Entomol. 60, 35 (2015)PubMedCrossRefGoogle Scholar
  46. 46.
    C.A. Geng, X.Y. Huang, Y.B. Ma, B. Hou, T.Z. Li, X.M. Zhang, J.J. Chen, J. Nat. Prod. 80, 959 (2017)PubMedCrossRefGoogle Scholar
  47. 47.
    K.C. Lee, W. Chan, Z. Liang, N. Liu, Z. Zhao, A.W.M. Lee, Z. Cai, Rapid Commun. Mass Spectrom. 22, 2825 (2008)PubMedCrossRefGoogle Scholar
  48. 48.
    J. Peng, G. Fan, Y. Wu, J. Chromatogr. A 1091, 89 (2005)PubMedCrossRefGoogle Scholar
  49. 49.
    M.J. Potter, V.A. Vanstone, K.A. Davies, A.J. Rathjen, J. Chem. Ecol. 26, 1811 (2000)CrossRefGoogle Scholar
  50. 50.
    J.Y. Kang, K.E. Ibrahim, D.H. Kim, W.J. Kang, J.A. Juvik, HortScience 41, 1382 (2006)CrossRefGoogle Scholar
  51. 51.
    P. Velasco, P. Soengas, M. Vilar, M.E. Cartea, J. Am. Soc. Hort. Sci. 133, 551 (2008)CrossRefGoogle Scholar
  52. 52.
    I.E. Sonderby, F. Geu-Flores, B.A. Halkier, Trends Plant Sci. 15, 283 (2010)PubMedCrossRefGoogle Scholar
  53. 53.
    C. Engels, A. Schieber, M.G. Gänzle, Eur. Food Res. Technol. 234, 535 (2012)CrossRefGoogle Scholar
  54. 54.
    Y. Shao, J. Jiang, L. Ran, C. Lu, C. Wei, Y. Wang, J. Agric. Food Chem. 62, 2935 (2014)PubMedCrossRefGoogle Scholar
  55. 55.
    L.Z. Lin, J. Sun, P. Chen, R.W. Zhang, X.E. Fan, L.W. Li, J.M. Harnly, J. Agric. Food Chem. 62, 6118 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Abdel-Farid IB, Jahangir M, vandenHondel CAMJJ, Kim HK, Choi YH, Verpoorte R (2009) Plant Sci. 176:608.Google Scholar
  57. 57.
    C.E. Narváez-Cuenca, J.P. Vincken, C. Zheng, H. Gruppen, Food Chem. 139, 1087 (2013)PubMedCrossRefGoogle Scholar
  58. 58.
    K.L. Mercer, H.R. Perales, Evol. Appl. 3, 480 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    M.A. Stanton, L. Ullmann-Zeunert, N. Wielsh, S. Bartram, A. Svatos, I.T. Baldwin, K. Groten, Plant Signal. Behav. 8, e27570 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    R.F. Mithen, M. Dekker, R. Verkerk, S. Rabot, I.T. Johnson, J. Sci. Food Agric. 80, 967 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of BotanyChinese Academy of SciencesKunmingPeople’s Republic of China
  2. 2.Yunnan Key Laboratory of Natural Medicinal ChemistryKunmingPeople’s Republic of China
  3. 3.Key Laboratory of Biodiversity and Biogeography, and Institute of Tibetan Plateau Research At KunmingKunming Institute of Botany, Chinese Academy of SciencesKunmingPeople’s Republic of China
  4. 4.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations