Antioxidant activity of sea cucumber (Stichopus japonicus) gut hydrolysates-ribose Maillard reaction products derived from organic reagent extraction

  • Yi-Tong Han
  • Chen-Chen Zhao
  • Jia-Run Han
  • Jia-Nan Yan
  • Yi-Nan Du
  • Wen-Hui Shang
  • Hai-Tao WuEmail author
Original Paper


The purpose of the present study was to explore the antioxidant activity of organic extracts from Maillard reaction products (MRPs) of sea cucumber (Stichopus japonicus) gut hydrolysates (SCGHs). The SCGHs were obtained after treatment with neutrase, and they were then reacted with ribose at a mass ratio of 1:2, pH 8.0, and 95 °C for up to 12 h. The MRPs were extracted by methanol and ethanol. The methanol extracts of the MRPs had a higher UV absorbance, browning intensity, and fluorescence intensity than the crude MRPs. The scavenging capacities of methanol and ethanol extracts from MRPs in both 2′,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assays increased significantly (p < 0.05). The methanol extracts were better than the ethanol extracts showing the reduced IC50 levels for ABTS and DPPH by 50% and 50%, respectively. The inhibitory activity for peroxidation of linoleic acid of MRPs was also enhanced in the methanol extracts of MRPs, but this was reduced in ethanol extracts. Moreover, HepG2 cell viability after exposure to the methanol extracts of MRPs was increased to 59.30 ± 0.43% compared with the SCGHs and MRPs, which was 3.97 times that of the H2O2-treated group. These results suggest that methanol extraction can improve the antioxidant activity of SCGHs-ribose MRPs and that the corresponding extracts can be potentially used as food antioxidants.


Sea cucumber gut Stichopus japonicus Hydrolysates Maillard reaction Methanol extraction Antioxidant ability 



Sea cucumber (Stichopus japonicus) guts


Sea cucumber guts hydrolysates


2′2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)


1,1-Diphenyl-2-picrylhydrazyl radical


Maillard reaction products


Hydrogen peroxide


Half maximal inhibitory concentration



This work was supported financially by the National Key R&D Program of China (No. 2018YFC03112005), the Innovative Talent Support Program for Colleges and Universities of Liaoning Province (LR2017031) and High-level Personnel of Innovative Support Program of Dalian city (2015R083).


  1. 1.
    Y.X. Liu, D.Y. Zhou, Z.Q. Liu, T. Lu, L. Song, D.M. Li, X.P. Dong, H. Qi, B.W. Zhu, F. Shahidi, Food Chem. 240, 1254–1261 (2018)CrossRefGoogle Scholar
  2. 2.
    Ministry of Agriculture of China, China Fishery Statistical Yearbook, 1st edn. (China Agriculture Press, Beijing, 2018), p. 23Google Scholar
  3. 3.
    J. Zheng, H.T. Wu, B.W. Zhu, X.P. Dong, M.M. Zhang, Y.L. Li, Eur. Food Res. Technol. 234, 895–904 (2012)CrossRefGoogle Scholar
  4. 4.
    J.R. Han, Z.M. Zhu, H.T. Wu, N. Sun, Y. Tang, C.P. Yu, J. Aquat. Food Prod. Technol. 26, 993–1002 (2017)CrossRefGoogle Scholar
  5. 5.
    Z.Q. Liu, F.Y. Tuo, L. Song, Y.X. Liu, X.P. Dong, D.M. Li, D.Y. Zhou, F. Shahidi, Food Chem. 256, 113–118 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Wang, Y. Wang, Q. Tang, Y. Wang, Y. Chang, Q. Zhao, C. Xue, J. Ocean Univ. China. 9, 94–98 (2010)CrossRefGoogle Scholar
  7. 7.
    D.C. Park, Y.S. Gu, C.I. Ji, S.B. Kim, Food Sci. Biotechnol. 10, 104–107 (2001)Google Scholar
  8. 8.
    H. Zhou, Y. Zhang, Y. Xue, S. Lin, Y. Zheng, J. Chem. Technol. Biotechnol. (2018). Google Scholar
  9. 9.
    J. Mamelona, R. Saint-Louis, É. Pelletier, Int. J. Food Sci. Technol. 45, 147–154 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Yan, H. Tao, S. Qin, J. Aquat. Food Prod. Technol. 25, 940–952 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Karnjanapratum, S. Benjakul, N. O’Brien, J. Aquat. Food Prod. Technol. 26, 148–162 (2017)CrossRefGoogle Scholar
  12. 12.
    Q. Liu, H. Niu, J. Zhao, J. Han, B. Kong, Int. J. Food Prop. 19, 99–110 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Cui, F.F. Lei, Y.R. Wang, H.F. Zhao, W.Z. Sun, L.J. You, Food Sci. Technol. Res. 20, 327–335 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. Liu, J. Li, B. Kong, N. Jia, P. Li, Food Sci. Biotechnol. 23, 33–41 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Eric, L.V. Raymond, M. Huang, M.J. Cheserek, K. Hayat, N.D. Savio, M. Amédée, X. Zhang, Food Res. Int. 54, 1437–1447 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Yuan, Y. Xu, C. Wang, Y. Li, F. Li, Y. Zhou, J. Chen, Z. Jin, H. Zhang, Y. Jiang, J. Food Sci. Technol. 52, 7163–7172 (2015)CrossRefGoogle Scholar
  17. 17.
    J.S. Kim, Food Sci. Biotechnol. 22, 39–46 (2013)CrossRefGoogle Scholar
  18. 18.
    C.Y. Ko, X.Y. Chen, W.C. Chang, Y.M. Zeng, R.H. Lin, X.B. Zhang, J.S. Wu, S.C. Shen, J. Sci. Food Agric. 98, 5242–5247 (2018)CrossRefGoogle Scholar
  19. 19.
    H.T. Wu, W.G. Jin, S.G. Sun, X.S. Li, X.H. Duan, Y. Li, Y.T. Yang, J.R. Han, B.W. Zhu, Eur. Food Res. Technol. 242, 713–722 (2016)CrossRefGoogle Scholar
  20. 20.
    W.Q. Wang, Y.H. Bao, Y. Chen, Food Chem. 139, 355–361 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Jiang, L. Wang, W. Wu, Y. Wang, Food Chem. 141, 3837–3845 (2013)CrossRefGoogle Scholar
  22. 22.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  23. 23.
    L.P. Köse, I. Gülcin, A.C. Gören, J. Namiesnik, A.L. Martinez-Ayala, S. Gorinstein, Ind. Crops Prod. 74, 712–721 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Tohma, İ. Gülçin, E. Bursal, A.C. Gören, S.H. Alwasel, E. Köksal, J. Food Meas. Charact. 11, 556–566 (2017)CrossRefGoogle Scholar
  25. 25.
    F. Topal, M. Nar, H. Gocer, P. Kalin, U.M. Kocyigit, İ. Gülçin, S.H. Alwasel, J. Enzyme Inhib. Med. Chem. 31, 674–683 (2016)CrossRefGoogle Scholar
  26. 26.
    E. Bursal, E. Köksal, İ. Gülçin, G. Bilsel, A.C. Gören, Food Res. Int. 51, 66–74 (2013)CrossRefGoogle Scholar
  27. 27.
    İ. Gülçin, M. Elmastaş, H.Y. Aboul-Enein, Arab. J. Chem. 5, 489–499 (2012)CrossRefGoogle Scholar
  28. 28.
    E. Bursal, İ. Gülçin, Food Res. Int. 44, 1482–1489 (2011)CrossRefGoogle Scholar
  29. 29.
    I.A. Ahmed, M.A. Mikail, M. Bin Ibrahim, N. Bin Hazali, M.S.B.A. Rasad, R.A. Ghani, R.A. Wahab, S.J. Arief, M.N.A. Yahya, Food Chem. 172, 778–787 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Benjakul, W. Lertittikul, F. Bauer, Food Chem. 93, 189–196 (2005)CrossRefGoogle Scholar
  31. 31.
    E.H. Ajandouz, L.S. Tchiakpe, F.D. Ore, A. Benajiba, A. Puigserver, J. Food Sci. 66, 926–931 (2001)CrossRefGoogle Scholar
  32. 32.
    J.S. Kim, Y.S. Lee, Food Sci. Biotechnol. 19, 1471–1477 (2010)CrossRefGoogle Scholar
  33. 33.
    S.C. Shen, J.S.B. Wu, J. Food Sci. 69, FCT273–FCT279 (2004)CrossRefGoogle Scholar
  34. 34.
    U. Nienaber, K. Eichner, Fett 97, 435–444 (1995)CrossRefGoogle Scholar
  35. 35.
    S.B. Matiacevich, M.P. Buera, Food Chem. 95, 423–430 (2006)CrossRefGoogle Scholar
  36. 36.
    C.K. Park, D.H. Kim, J. Am. Oil Chem. Soc. 60, 98–102 (1983)CrossRefGoogle Scholar
  37. 37.
    B.A. Mondaca-Navarro, L.A. Ávila-Villa, A.F. González-Córdova, J. López-Cervantes, D.I. Sánchez-Machado, O.N. Campas-Baypoli, R. Rodríguez-Ramírez, J. Sci. Food Agric. 97, 3522–3529 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Limsuwanmanee, M. Chaijan, S. Manurakchinakorn, W. Panpipat, S. Klomklao, S. Benjakul, LWT Food Sci. Technol. 57, 718–724 (2014)CrossRefGoogle Scholar
  39. 39.
    C.A. Rice-evans, N.J. Miller, P.G. Bolwell, P.M. Bramley, J.B. Pridham, Free Radic. Res. 22, 375–383 (1995)CrossRefGoogle Scholar
  40. 40.
    N.J. Miller, J. Sampson, L.P. Candeias, P.M. Bramley, C.A. Rice-Evans, FEBS Lett. 384, 240–242 (1996)CrossRefGoogle Scholar
  41. 41.
    G. Budryn, E. Nebesny, A. Podsędek, D. Żyżelewicz, M. Materska, S. Jankowski, B. Janda, Eur. Food Res. Technol. 228, 913–922 (2009)CrossRefGoogle Scholar
  42. 42.
    C. Rice-Evans, N.J. Miller, Br. Food J. 97, 35–40 (1995)CrossRefGoogle Scholar
  43. 43.
    P.D. Duh, J. Am. Oil Chem. Soc. 75, 455–461 (1998)CrossRefGoogle Scholar
  44. 44.
    M.H. Gordon, Food Antioxidants (Springer, Dordrecht, 1990), pp. 1–18CrossRefGoogle Scholar
  45. 45.
    I. Gülçin, Arch. Toxicol. 86, 345–391 (2012)CrossRefGoogle Scholar
  46. 46.
    O. Talaz, İ. Gülçin, S. Göksu, N. Saracoglu, Bioorg. Med. Chem. 17, 6583–6589 (2009)CrossRefGoogle Scholar
  47. 47.
    J.S. Kim, Food Sci. Biotechnol. 22, 831–837 (2013)CrossRefGoogle Scholar
  48. 48.
    P. Bersuder, M. Hole, G. Smith, J. Am. Oil Chem. Soc. 75, 181–187 (1998)CrossRefGoogle Scholar
  49. 49.
    M.J. Sproston, C.C. Akoh, J. Food Sci. 81, C2923–C2931 (2016)CrossRefGoogle Scholar
  50. 50.
    X. Li, X. Shi, Y. Jin, F. Ding, Y. Du, Carbohydr. Polym. 91, 428–433 (2013)CrossRefGoogle Scholar
  51. 51.
    S. Knasmüller, W. Parzefall, R. Sanyal, S. Ecker, C. Schwab, M. Uhl, V. Mersch-Sundermann, G. Williamson, G. Hietsch, T. Langer, F. Darroudi, A.T. Natarajan, Mutat. Res., Fundam. Mol. Mech. Mutagen. 402, 185–202 (1998)CrossRefGoogle Scholar
  52. 52.
    H. Jing, D.D. Kitts, Food Res. Int. 33, 509–516 (2000)CrossRefGoogle Scholar
  53. 53.
    W. Jiang, Y. Chen, X. He, S. Hu, S. Li, Y. Liu, Food Chem. 239, 377–384 (2018)CrossRefGoogle Scholar
  54. 54.
    F. Zha, B. Wei, S. Chen, S. Dong, M. Zeng, Z. Liu, Food Funct. 6, 1919–1927 (2015)CrossRefGoogle Scholar
  55. 55.
    N.S. Oh, L.J. Young, H.A. Lee, J.Y. Joung, Y.K. Shin, S.H. Kim, J. Dairy Sci. 99, 947–958 (2016)CrossRefGoogle Scholar
  56. 56.
    S. Muscat, M. Pischetsrieder, A. Maczurek, S. Rothemund, G. Münch, Mol. Nutr. Food Res. 53, 1019–1029 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
  2. 2.National Engineering Research Center of SeafoodDalianChina

Personalised recommendations