Advertisement

Antioxidant potential of Salicornia arabica lipid extract and their protective effect against cadmium induced oxidative stress in erythrocytes isolated from rats

  • Nadia Hammami
  • Khaled AthmouniEmail author
  • Imen Lahmar
  • Ferjani Ben Abdallah
  • Karima Belghith
Original Paper
  • 9 Downloads

Abstract

The Salicornia species have been used for treatment and prevention of a various diseases. To the best of my knowledge, little information is regarding the antioxidant and protective activities of lipid extract from Salicornia Arabica (SALE). The objectives of this present work were designed to determine the in vitro antioxidant activities of SALE against cadmium-induced toxicity in erythrocytes isolated from rats. The distribution of fatty acid reflected the richness in saturated fatty acids that were predominated by palmitic acid. Our analysis showed that the major fatty acid components were palmitic acid (47.78%), linoleic acid (17.75%), followed by nanadecenoic acid (10.96%). Minor fatty acids including lignoseric acid and palmatoleic acid (C16:0). The in vitro antioxidant activity of SALE was evaluated using both test DPPH and ABTS assays. An important antioxidant potential was observed. The protective potential of SALE was evaluated by estimating the levels of stress markers like MDA concentration and SOD, CAT and GPx activities. Our results showed that cadmium significantly decreased the SOD, CAT and GPx activities in erythrocytes homogenates and enhanced lipid peroxidation. The pre-treatment with SALE ameliorated antioxidant status and inhibited MDA level in erythrocytes. In conclusion, the lipid isolated from S. arabica showed protective potential against Cd-induced erythrocytes damage, which could be related to active compounds present in this fraction.

Keywords

Cadmium Erythrocytes Lipid extract Oxidative stress Salicornia arabica Stress markers 

Notes

References

  1. 1.
    D. Belhaj, K. Athmouni, M.B. Ahmed, N. Aoiadni, A. El Feki, J.L. Zhou, H. Ayadi, Int. J. Biol. Macromol. 113, 813–820 (2018)Google Scholar
  2. 2.
    K. Athmouni, D. Belhaj, A. El Feki, H. Ayadi, Int. J. Biol. Macromol. 108, 853–862 (2018)Google Scholar
  3. 3.
    K. Athmouni, D. Belhaj, K. Mkadmini Hammi, A. El Feki, and H. Ayadi, Arch. Physiol. Biochem. 124(3), 261–274 (2017)Google Scholar
  4. 4.
    I. Messaoudi, F. Hammouda, J. El Heni, T. Baati, K. Saïd, A. Kerkeni, Exp. Toxicol. Pathol. 62(3), 281–288 (2010)Google Scholar
  5. 5.
    D.K. Gupta, L.B. Pena, M.C. Romero-Puertas, A. Hernández, M. Inouhe, L.M. Sandalio, Plant Cell Environ. 40(4), 509–526 (2017)Google Scholar
  6. 6.
    M.Y.B. Çimen, Clin. Chim. Acta 390, 1 (2008)Google Scholar
  7. 7.
    J.M. Lorenzo, M. Pateiro, R. Domínguez, F.J. Barba, P. Putnik, D.B. Kovačević, A. Shpigelman, D. Granato, D. Franco, Food Res. Int. 106, 1095 (2018)Google Scholar
  8. 8.
    G. Serreli, I. Jerković, Z. Marijanović, K.A. Gil, C.I.G. Tuberoso, Food Res. Int. 99, 571 (2017)Google Scholar
  9. 9.
    J. Fusi, S. Bianchi, S. Daniele, S. Pellegrini, C. Martini, F. Galetta, L. Giovannini, F. Franzoni, Biomed. Pharmacother. 101, 805 (2018)Google Scholar
  10. 10.
    A.F.G. Cicero, A. Reggi, A. Parini, C. Borghi, Arch. Med. Sci. 8(5), 784–793 (2012)Google Scholar
  11. 11.
    S. Nodari, M. Triggiani, A. Manerba, G. Milesi, L.D. Cas, Intern. Emerg. Med. 43(8), 1575–1581 (2011)Google Scholar
  12. 12.
    S. Patel, 3 Biotech 6, 104 (2016)Google Scholar
  13. 13.
    Y.A. Kim, C.-S. Kong, Y.R. Um, S.-Y. Lim, S.S. Yea, Y. Seo, J. Med. Food. 12(3), 661–668 (2009)Google Scholar
  14. 14.
    S. Kang, D. Kim, B.H. Lee, M.R. Kim, J. Hong, M. Chiang, Food Sci. Biotechnol. 31(12), 2221–2228 (2011)Google Scholar
  15. 15.
    J. Folch, M. Lees, G.H.S. Stanley, J Biol Chem. 226(1), 497–509 (1957)Google Scholar
  16. 16.
    G. Lepage, C.C. Roy, J. Lipid Res. 25(12), 1391–1396 (1984)Google Scholar
  17. 17.
    H. Öztürk, U. Kolak, C. Meric, Rec. Nat. Prod. 5, 43–51 (2011)Google Scholar
  18. 18.
    M. Ozgen, R.N. Reese, A.Z. Tulio, J.C. Scheerens, A.R. Miller, J. Agric. Food Chem. 54, 1151–1157 (2006)Google Scholar
  19. 19.
    B. Halliwell, J.M.C. Gutteridge, Free Radic. Biol. Med. 1(4), 331–332 (2007)Google Scholar
  20. 20.
    J.A. Vinson, T.B. Howard, J. Nutr. Biochem. 7(12), 659–663 (1996)Google Scholar
  21. 21.
    H. Zhang, T. Chen, J. Jiang, Y.S. Wong, F. Yang, W. Zheng, J. Agric. Food Chem. 59(16), 8683–8690 (2011)Google Scholar
  22. 22.
    D. Jollow, J.R. Mitchell, N. Zampaglione, J.R. Gillette, Pharmacology 11(3), 151–169 (1974)Google Scholar
  23. 23.
    C. Beauchamp, I. Fridovich, Anal. Biochem. 44(1), 276–287 (1971)Google Scholar
  24. 24.
    H. Aebi, Methods Enzymol. 105, 121–126 (1984)Google Scholar
  25. 25.
    L. Flohé, W.A. Günzler, Methods Enzymol. 105, 114–120 (1984)Google Scholar
  26. 26.
    W.G. Niehaus, B. Samuelsson, Eur. J. Biochem. 6(1), 126–130 (1968)Google Scholar
  27. 27.
    G.E. Henry, R.A. Momin, M.G. Nair, D.L. Dewitt, J. Agric. Food Chem. 50(8), 2231–2234 (2002)Google Scholar
  28. 28.
    O. Köseoǧlu, D. Sevim, P. Kadiroǧlu, Food Chem. 1(212), 628–634 (2016)Google Scholar
  29. 29.
    B. Nazima, V. Manoharan, S. Miltonprabu, Hum. Exp. Toxicol. 35(4), 428–447 (2016)Google Scholar
  30. 30.
    A. Honda, H. Komuro, T. Hasegawa, Y. Seko, A. Shimada, H. Nagase, I. Hozumi, T. Inuzuka, H. Hara, Y. Fujiwara, M. Satoh, J. Toxicol. Sci. 35(2), 209–215 (2010)Google Scholar
  31. 31.
    T. Kamiya, M. Izumi, H. Hara, T. Adachi, Biol Pharm Bull. 35(7), 1126–1131 (2012)Google Scholar
  32. 32.
    L. Wang, J. Cao, D. Chen, X. Liu, H. Lu, Z. Liu, Biol Trace Elem Res. 127(1), 53–68 (2009)Google Scholar
  33. 33.
    I. Messaoudi, F. Hammouda, J. El Heni, T. Baati, K. Saïd, A. Kerkeni, Exp. Toxicol. Pathol. 62, 281 (2010)Google Scholar
  34. 34.
    I. Dahmen-Ben Moussa, K. Bellassoued, K. Athmouni, M. Naifar, H. Chtourou, H. Ayadi, F. Makni-Ayadi, S. Sayadi, A. El Feki, and A. Dhouib, Toxicol. Mech. Methods 26, (2016).Google Scholar
  35. 35.
    A. Maadane, N. Merghoub, T. Ainane, H. El Arroussi, R. Benhima, S. Amzazi, Y. Bakri, I. Wahby, J. Biotechnol. 10(215), 13–19 (2015)Google Scholar
  36. 36.
    A.M. Attia, H.M. Nasr, Omega 42, 180–187 (2009)Google Scholar
  37. 37.
    E.K.J. Pauwels, M. Kostkiewicz, Drug News Perspect. 21(10), 552–561 (2008)Google Scholar
  38. 38.
    R.G. Fassett, G.C. Gobe, J.M. Peake, J.S. Coombes, Am. J. Kidney Dis. 56(4), 728–742 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Unit in Plant Biodiversity and Ecosystem Dynamics in Arid Environment, Faculty of SciencesSfaxTunisia
  2. 2.Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and PlanktonologyUniversity of SfaxSfaxTunisia
  3. 3.Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of SciencesUniversity of SfaxSfaxTunisia
  4. 4.Laboratory of Plant Biotechnology Applied To Crop ImprovementSfax Faculty of SciencesSfaxTunisia

Personalised recommendations