Advertisement

Chemical constituents of Porodaedalea pini mushroom with cytotoxic, antioxidant and anticholinesterase activities

  • Ebru Deveci
  • Gülsen Tel-Çayan
  • Mehmet Emin DuruEmail author
  • Mehmet Öztürk
Original Paper
  • 14 Downloads

Abstract

Chemical investigation of Porodaedalea pini led to the isolation of campesterol (1), ergosta-7,24(28)-dien-3β-ol (2), dioctyl phthalate (3), ergosterol peroxide (4), pinoresinol (5) and 4-(3,4-dihydroxyphenyl)but-3-en-2-one (6). Compounds 1, 3, and 6 were isolated for the first time from P. pini. The structures of compounds were elucidated by IR, 1D-NMR, and 2D-NMR techniques. Antioxidant, anticholinesterase, and cytotoxic activities against breast cancer cell (MCF-7) were tested. The highest antioxidant and cytotoxic activity were found in the methanol extract. Also, compound 6 was found to be active in all antioxidant tests. The hexane extract (38.15 ± 1.50%) exhibited the highest activity against AChE enzyme while the acetone extract (48.75 ± 0.13%) against BChE enzyme. Moreover, among isolated compounds, compound 5 was found to have the highest cytotoxic (IC50: 21.08 ± 1.01 µg/mL), AChE (13.73 ± 0.85%) and BChE (80.02 ± 0.73%) inhibitory activities. The phenolic profile was analyzed by HPLC–DAD and p-hydroxybenzoic acid (32.40 µg/g) was identified as a major compound.

Keywords

Porodaedalea pini Isolation Antioxidant activity Cytotoxic activity Enzyme inhibitory activity Breast cancer 

Abbreviations

ABTS

2,2′-azino bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt

AChE

Acetylcholinesterase

BChE

Butyrylcholinesterase

BHA

Butylated hydroxyl anisole

COSY

Correlation spectroscopy

CUPRAC

Cupric reducing antioxidant capacity

DPPH

1,1-diphenyl-2-picrylhydrazyl

EDTA

Ethylenediaminetetraacetic acid

EtOAc

Ethyl acetate

EtOH

Ethanol

FT-IR

Fourier-transform infrared spectroscopy

HMBC

Heteronuclear multiple bond correlation

HPLC–DAD

High performance liquid chromatography-diode array detection

HSQC

Heteronuclear single quantum coherence

IC50

Half-maximal inhibitory concentration

NMR

Nuclear magnetic resonance

TLC

Thin layer chromatography

Notes

Acknowledgements

This study is a part of E.D.’s Ph.D. thesis. The authors would like to thank the Scientific and Technological Research Council of Turkey for financial support under project TUBITAK-114Z550. The Mugla Sitki Kocman University Research Fund is also acknowledged under project number (MUBAP 15/238).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary material

11694_2019_189_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 1999 kb)

References

  1. 1.
    M. Öztürk, G. Tel-Cayan, A. Muhammad, P. Terzioglu, M.E. Duru, Mushrooms: a source of exciting bioactive compounds, in Studies in Natural Product Chemistry, vol. 45, ed. by F.R.S. Atta-ur-Rahman (Elsevier, Amsterdam, 2015), pp. 363–456Google Scholar
  2. 2.
    I.C. Ferreira, L. Barros, R.M. Abreu, Curr. Med. Chem. 16, 1543–1560 (2009)CrossRefGoogle Scholar
  3. 3.
    H.C. Lo, S.P. Wasser, Int. J. Med. Mushrooms 13, 401–426 (2011)CrossRefGoogle Scholar
  4. 4.
    M.J. Alves, I.C. Ferreira, J. Dias, V. Teixeira, A. Martins, M. Pintado, Planta Med. 78, 1707–1718 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Ren, C. Perera, Y. Hemar, Food Funct. 3, 1118–1130 (2012)CrossRefGoogle Scholar
  6. 6.
    D. Gunawardena, K. Shanmugam, M. Low, L. Bennett, S. Govindaraghavan, R. Head, L. Ooi, G. Münch, Eur. J. Nutr. 52, 1287–1305 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Seephonkai, S. Samchai, A. Thongsom, S. Sunaart, B. Kiemsanmuang, B. Chakuton, Chin. J. Nat. Med. 9(6), 0441–0445 (2011)Google Scholar
  8. 8.
    X. Wu, S. Lin, C. Zhu, Z. Yue, Y. Yu, F. Zhao, B. Liu, J. Dai, J. Shi, J. Nat. Prod. 73(7), 1294–1300 (2010)CrossRefGoogle Scholar
  9. 9.
    A.R. Song, X.L. Sun, C. Kong, C. Zhao, D. Qin, F. Huang, S. Yang, Arch. Virol. 159, 753–760 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Wang, F. Hu, Y. Luo, H. Luo, N. Huang, F. Cheng, Z. Deng, W. Deng, K. Zou, Fitoterapia 95, 93–101 (2014)CrossRefGoogle Scholar
  11. 11.
    J.J. Pei, Z.B. Wang, H.L. Ma, J.K. Yan, Carbohydr. Polym. 115, 472–477 (2015)CrossRefGoogle Scholar
  12. 12.
    W.A. Ayer, D.J. Muir, P. Chakravarty, Phytochemistry 42, 1321–1324 (1996)CrossRefGoogle Scholar
  13. 13.
    F. Zhu, W. Lu, W. Feng, Z. Song, C. Wang, X. Chen, Int. J. Org. Chem. 7, 25–33 (2017)CrossRefGoogle Scholar
  14. 14.
    S.C. Jeong, S.P. Cho, B.K. Yang, Y.T. Jeong, K.S. Ra, C.H. Song, J. Microbiol. Biotechnol. 14(1), 15–21 (2004)Google Scholar
  15. 15.
    S.M. Lee, S.M. Kim, Y.H. Lee, W.J. Kim, J.K. Park, Y. Park, W.J. Jang, H.D. Shin, A. Synytsya, Macromol. Res. 18, 602–609 (2010)CrossRefGoogle Scholar
  16. 16.
    A.J. Liu, H.C. Sun, Y. Chen, W.H. Wang, C.H. Liu, Y.M. Wang, Adv. Mater. Res. 936, 728–733 (2014)CrossRefGoogle Scholar
  17. 17.
    P. Jiang, L. Yuan, D. Cai, L. Jiao, L. Zhang, Carbohydr. Polym. 117, 600–604 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Jiang, L. Yuan, G. Huang, X. Wang, X. Li, L. Jiao, L. Zhang, Int. J. Biol. Macromol. 93, 566–571 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Slinkard, V.L. Singleton, Am. J. Enol. Viticult. 28, 49–55 (1997)Google Scholar
  20. 20.
    L. Barros, M. Duenas, I.C.F.R. Ferreira, P. Baptista, C. Santos-Buelga, Food Chem. Toxicol. 47, 1076–1079 (2009)CrossRefGoogle Scholar
  21. 21.
    G. Tel-Çayan, M. Öztürk, M.E. Duru, M. Rehman, A. Adhikari, A. Türkoglu, M.I. Choudhary, Ind. Crops Prod. 76, 749–775 (2015)CrossRefGoogle Scholar
  22. 22.
    E. Deveci, G. Tel-Çayan, M.E. Duru, Int. J. Food Prop. 21, 771–783 (2018)CrossRefGoogle Scholar
  23. 23.
    G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherston, Biochem. Pharmacol. 7, 88–95 (1961)CrossRefGoogle Scholar
  24. 24.
    T. Masuda, D. Yamashita, Y. Takeda, S. Yonemori, Biosci. Biotechnol. Biochem. 69, 197–201 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Kamurthy, S. Ch, N.S. Rao, M. Sudhakar, Asian J. Pharm. Clin. Res. 6(1), 149–152 (2013)Google Scholar
  26. 26.
    Y.J. Hong, A.R. Jang, K.S. Yang, Nat. Prod. Sci. 19(3), 258–262 (2013)Google Scholar
  27. 27.
    Y.J. Hong, A.R. Jang, H.J. Jang, K.S. Yang, Nat. Prod. Sci. 18(3), 147–152 (2012)Google Scholar
  28. 28.
    X.L. Ouyang, L.X. Wei, H.S. Wang, Y.M. Pan, S. Afr. J. Bot. 98, 162–166 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Ohmura, T. Miyase, A. Ueno, Phytochemistry 28(7), 1919–1924 (1989)CrossRefGoogle Scholar
  30. 30.
    A. Lourenço, A.M. Lobo, B. Rodriguez, M.L. Jimeno, Phytochemistry 43, 617–620 (1996)CrossRefGoogle Scholar
  31. 31.
    H.V.K. Wangun, C. Hertweck, Eur. J. Org. Chem. 2007, 3292–3295 (2007)CrossRefGoogle Scholar
  32. 32.
    H.J. Jang, K.S. Yang, Arch. Pharm. Res. 34, 913–917 (2011)CrossRefGoogle Scholar
  33. 33.
    R. Manuja, S. Sachdeva, A. Jain, J. Chaudhary, Int. J. Pharm. Sci. Rev. Res. 22(2), 109–115 (2013)Google Scholar
  34. 34.
    M.Y. Kim, P. Seguin, J.K. Ahn, J.J. Kim, S.C. Chun, E.H. Kim, S.H. Seo, E.Y. Kang, S.L. Kim, Y.J. Park, H.M. Ro, I.M. Chung, J. Agric. Food Chem. 56, 7265–7270 (2008)CrossRefGoogle Scholar
  35. 35.
    S. Mo, S. Wang, G. Zhou, Y. Yang, Y. Li, X. Chen, J. Nat. Prod. 67, 823–828 (2004)CrossRefGoogle Scholar
  36. 36.
    A.M. Aboul-Enein, S.M.M. Shanab, E.A. Shalaby, M.M. Zahran, D.A. Lightfoot, H.A. El-Shemy, BMC Complement Altern. Med. 14, 397 (2014)CrossRefGoogle Scholar
  37. 37.
    D.Q. Li, D. Wang, L. Zhou, L.Z. Li, Q.B. Liu, Y.Y. Wu, J.Y. Yang, S.J. Song, C.F. Wu, J. Asian Nat. Prod. Res. 19(5), 519–527 (2017)CrossRefGoogle Scholar
  38. 38.
    L.B. Vinh, N.T.M. Nguyet, S.Y. Yang, J.H. Kim, L.T. Vien, P.T.T. Huong, N.V. Thanh, N.X. Cuong, N.H. Nam, C.V. Minh, I. Hwang, Y.H. Kim, Nat. Prod. Res. 9, 1–7 (2017)Google Scholar
  39. 39.
    J.W. Li, S.D. Ding, X.L. Ding, Process Biochem. 40, 3607–3613 (2005)CrossRefGoogle Scholar
  40. 40.
    I.-C. Jang, E.-K. Jo, S.-M. Bae, M.-S. Bae, H.-J. Lee, E. Park, H.-G. Yuk, G.-H. Ahn, S.-C. Lee, Food Sci. Technol. Res. 16, 577–584 (2010)CrossRefGoogle Scholar
  41. 41.
    B.S. Hwang, I.K. Lee, B.S. Yun, J. Antibiot. 69(2), 108–110 (2016)CrossRefGoogle Scholar
  42. 42.
    E.R. Eom, J.B. Weon, Y.S. Jung, G.H. Ryu, W.S. Yang, C.J. Ma, Arch. Pharm. Res. 40, 704–712 (2017)CrossRefGoogle Scholar
  43. 43.
    F.G. Koçancı, B. Aslım, Manas J. Agric. Life Sci. 6(1), 19–35 (2016)Google Scholar
  44. 44.
    I.A. Owokotomo, O. Ekundayo, T.G. Abayomi, A.V. Chukwuka, Toxicol. Rep. 2, 850–857 (2015)CrossRefGoogle Scholar
  45. 45.
    K.H. Im, T.K. Nguyen, J.K. Kim, J.H. Choi, T.S. Lee, Int. J. Med. Mushrooms. 18(11), 1011–1022 (2016)CrossRefGoogle Scholar
  46. 46.
    D. Szwajgier, Ann. Agric. Environ. Med. 22, 690–694 (2015)CrossRefGoogle Scholar
  47. 47.
    D. Khan, H.U. Khan, F. Khan, S. Khan, S. Badshah, A.S. Khan, A. Samad, F. Ali, I. Khan, N. Muhammad, PLoS ONE 9(4), e94952 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Parveen, M. Saleem, N. Riaz, M. Ashraf, Q. Ain, M.F. Nisar, A. Jabbar, J. Asian Nat. Prod. Res. 18(3), 222–231 (2016)CrossRefGoogle Scholar
  49. 49.
    H.X. Nguyen, N.T. Nguyen, M.H.K. Nguyen, T.H. Le, T.N.V. Do, T.M. Hung, M.T.T. Nguyen, Chem. Cent. J. 10, 2 (2016)CrossRefGoogle Scholar
  50. 50.
    J. Chompoo, A. Upadhyay, S. Gima, M. Fukuta, S. Tawata, Molecules 17, 6237–6248 (2012)CrossRefGoogle Scholar
  51. 51.
    A.M.A. Morgan, M.N. Jeon, M.H. Jeong, S.Y. Yang, Y.H. Kim, Nat. Prod. Sci. 22(2), 111–116 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesMuğla Sıtkı Koçman UniversityMuğlaTurkey
  2. 2.Department of Chemistry and Chemical Processing Technologies, Muğla Vocational SchoolMuğla Sıtkı Koçman UniversityMuğlaTurkey

Personalised recommendations