Analysis of triacylglycerols molecular species composition, total fatty acids, and sn-2 fatty acids positional distribution in different types of milk powders

  • Abdelmoneim H. AliEmail author
  • Elsayed Mohamed Abd El-Wahed
  • Sherif M. Abed
  • Sameh A. Korma
  • Wei Wei
  • Xingguo WangEmail author
Original Paper


Triacylglycerols (TAGs) are considered the main component of milk fat; possess significant functional roles from the technological, nutritional and physiological points of view. In this study, an ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry was applied to identify the molecular species composition of TAGs in buffalo, camel, and ewe milk powders. The separation of TAGs was achieved by using two mobile phases; acetonitrile/isopropanol (1:9, v/v) as mobile phase A, and 40% acetonitrile as mobile phase B, the binary gradient elution allowed the separation of milk TAGs in consistent with the increase in partition number. More than 180 TAGs in buffalo milk, 90 TAGs in camel milk, and 129 TAGs in ewe milk were unambiguously identified, and the most abundant molecular species in the three types of milk powders were detected at mass to charge (m/z) values of 682.53, 822.67, and 656.53, respectively. The total acyl carbon numbers of buffalo milk TAGs ranged between 26 and 54, with double bonds from 0 to 6. While, the total acyl carbon numbers of camel milk TAGs ranged between 42 and 54, with double bonds from 0 to 3. The total acyl carbon numbers of ewe milk TAGs ranged between 26 and 52, with double bonds from 0 to 2. The major fatty acids (FAs) in the different types of milk powders were myristic, palmitic, stearic, oleic, and linoleic. The positional distribution of saturated FAs at the sn-2 position was higher in buffalo milk powder as compared to camel and ewe milk powders. This study reports a comprehensive identification of TAGs molecular species in different types of milk powders.


Milk powder Triacylglycerols Fatty acids composition UPLC–Q-TOF–MS 



This work was supported by the National Natural Science Foundation of People’s Republic of China (31601433) and Jiangsu Provincial Natural Science Foundation (BK20140149).

Compliance with ethical standards

Conflict of interest:

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical approval:

This article does not contain any studies with human or animals and complies with ethical requirements.


  1. 1.
    MacGibbon A, Taylor M (2006) Composition and structure of bovine milk lipids. In: Advanced Dairy Chemistry. Lipids, vol 2. Springer, Boston, pp 1–42Google Scholar
  2. 2.
    R. Kanwal, T. Ahmed, B. Mirza, Comparative analysis of quality of milk collected from buffalo, cow, goat and sheep of Rawalpindi/Islamabad region in Pakistan. Asian J. Plant Sci. 3(3), 300–305 (2004)CrossRefGoogle Scholar
  3. 3.
    A. Tanamati, C.C. Oliveira, J.V. Visentainer, M. Matsushita, N.E. de Souza, Comparative study of total lipids in beef using chlorinated solvent and low-toxicity solvent methods. J. Am. Oil Chem. Soc. 82(6), 393–397 (2005)CrossRefGoogle Scholar
  4. 4.
    M.C. Milinsk, M. Matsushita, J.V. Visentainer, C.C. de Oliveira, N.E. de Souza, Comparative analysis of eight esterification methods in the quantitative determination of vegetable oil fatty acid methyl esters (FAME). J. Braz. Chem. Soc. 19(8), 1475–1483 (2008)CrossRefGoogle Scholar
  5. 5.
    C. Ruiz-Samblás, F. Marini, L. Cuadros-Rodríguez, A. González-Casado, Quantification of blending of olive oils and edible vegetable oils by triacylglycerol fingerprint gas chromatography and chemometric tools. J. Chromatogr. B 910, 71–77 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Ruiz-Samblás, A. González-Casado, L. Cuadros-Rodríguez, F.R. García, Application of selected ion monitoring to the analysis of triacylglycerols in olive oil by high temperature-gas chromatography/mass spectrometry. Talanta 82(1), 255–260 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Fontecha, H. Goudjil, J. Ríos, M. Fraga, M. Juárez, Identity of the major triacylglycerols in ovine milk fat. Int. Dairy J. 15(12), 1217–1224 (2005)CrossRefGoogle Scholar
  8. 8.
    J. Fontecha, J. Ríos, L. Lozada, M. Fraga, M. Juárez, Composition of goat’s milk fat triglycerides analysed by silver ion adsorption–TLC and GC–MS. Int. Dairy J. 10(1), 119–128 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Beccaria, G. Sullini, F. Cacciola, P. Donato, P. Dugo, L. Mondello, High performance characterization of triacylglycerols in milk and milk-related samples by liquid chromatography and mass spectrometry. J. Chromatogr. A 1360, 172–187 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Holčapek, P. Jandera, P. Zderadička, L. Hruba, Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 1010(2), 195–215 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Lisa, M. Holčapek, M. Boháč, Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry data. J. Agric. Food Chem. 57(15), 6888–6898 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Holčapek, H. Dvořáková, M. Lísa, A.J. Girón, P. Sandra, J. Cvačka, Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography–atmospheric pressure chemical ionization mass spectrometry: comparison of five different mass analyzers. J. Chromatogr. A 1217(52), 8186–8194 (2010)CrossRefGoogle Scholar
  13. 13.
    I. Haddad, M. Mozzon, R. Strabbioli, N.G. Frega, Electrospray ionization tandem mass spectrometry analysis of triacylglycerols molecular species in camel milk (Camelus dromedarius). Int. Dairy J. 21(2), 119–127 (2011)CrossRefGoogle Scholar
  14. 14.
    G. Andreotti, E. Trivellone, R. Lamanna, A. Di Luccia, A. Motta, Milk identification of different species: 13C-NMR spectroscopy of triacylglycerols from cows and buffaloes’ milks. J. Dairy Sci. 83(11), 2432–2437 (2000)CrossRefGoogle Scholar
  15. 15.
    G. Picariello, R. Sacchi, O. Fierro, D. Melck, R. Romano, A. Paduano, A. Motta, F. Addeo, High resolution 13C NMR detection of short- and medium-chain synthetic triacylglycerols used in butterfat adulteration. Eur. J. Lipid Sci. Technol. 115(8), 858–864 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Laakso, P. Manninen, Identification of milk fat triacylglycerols by capillary supercritical fluid chromatography–atmospheric pressure chemical ionization mass spectrometry. Lipids 32(12), 1285–1295 (1997)CrossRefGoogle Scholar
  17. 17.
    K.L. Ross, S.L. Hansen, T. Tu, Reversed-phase analysis of triacylglycerols by ultra performance liquid chromatography–evaporative light scattering detection (UPLC–ELSD). Lipid Technol. 23(1), 14–16 (2011)CrossRefGoogle Scholar
  18. 18.
    J.S. Park, M.Y. Jung, Development of high-performance liquid chromatography–time-of-flight mass spectrometry for the simultaneous characterization and quantitative analysis of gingerol-related compounds in ginger products. J. Agric. Food Chem. 60(40), 10015–10026 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Shi, H. Yang, X. Zhang, Y. Sheng, H. Huang, L. Yu, Isolation and characterization of five glycerol esters from Wuhan propolis and their potential anti-inflammatory properties. J. Agric. Food Chem. 60(40), 10041–10047 (2012)CrossRefGoogle Scholar
  20. 20.
    T. Zhang, F. Lou, G. Tao, R. Liu, M. Chang, Q. Jin, X. Wang, Composition and structure of single cell oil produced by Schizochytrium limacinum SR31. J. Am. Oil Chem. Soc. 93(10), 1337–1346 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Folch, M. Lees, G. Sloane-Stanley, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)Google Scholar
  22. 22.
    F. Luddy, R. Barford, S. Herb, P. Magidman, R. Riemenschneider, Pancreatic lipase hydrolysis of triglycerides by a semimicro technique. J. Am. Oil Chem. Soc. 41(10), 693–696 (1964)CrossRefGoogle Scholar
  23. 23.
    V. Ruiz-Gutierrez, L. Barron, Methods for the analysis of triacylglycerols. J. Chromatogr. B 671(1), 133–168 (1995)CrossRefGoogle Scholar
  24. 24.
    H.R. Mottram, S.E. Woodbury, R.P. Evershed, Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11(12), 1240–1252 (1997)CrossRefGoogle Scholar
  25. 25.
    H.R. Mottram, R.P. Evershed, Elucidation of the composition of bovine milk fat triacylglycerols using high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 926(2), 239–253 (2001)CrossRefGoogle Scholar
  26. 26.
    M. Lísa, H. Velínská, M. Holčapek, Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal. Chem. 81(10), 3903–3910 (2009)CrossRefGoogle Scholar
  27. 27.
    C. Beermann, J. Jelinek, T. Reinecker, A. Hauenschild, G. Boehm, H. Klör, Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids Health Dis. 2(1), 10 (2003)CrossRefGoogle Scholar
  28. 28.
    J. Gresti, M. Bugaut, C. Maniongui, J. Bezard, Composition of molecular species of triacylglycerols in bovine milk fat. J. Dairy Sci. 76(7), 1850–1869 (1993)CrossRefGoogle Scholar
  29. 29.
    X. Zou, J. Huang, Q. Jin, Z. Guo, Y. Liu, L. Cheong, X. Xu, X. Wang, Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. J. Agric. Food Chem. 61(29), 7070–7080 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Kuksis, M. McCarthy, J. Beveridge, Triglyceride composition of native and rearranged butter and coconut oils. J. Am. Oil Chem. Soc. 41(3), 201–205 (1964)CrossRefGoogle Scholar
  31. 31.
    P.W. Parodi, Stereospecific distribution of fatty acids in bovine milk fat triglycerides. J. Dairy Res. 46(01), 75–81 (1979)CrossRefGoogle Scholar
  32. 32.
    D. Kritchevsky, Effects of triglyceride structure on lipid metabolism. Nutr. Rev. 46(5), 177–181 (1988)CrossRefGoogle Scholar
  33. 33.
    D.M. Small, The effects of glyceride structure on absorption and metabolism. Annu. Rev. Nutr. 11(1), 413–434 (1991)CrossRefGoogle Scholar
  34. 34.
    T. Redgrave, D. Kodali, D. Small, The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons and triacylglycerol-rich emulsions in the rat. J. Biol. Chem. 263(11), 5118–5123 (1988)Google Scholar
  35. 35.
    I. Haddad, M. Mozzon, R. Strabbioli, N.G. Frega, Stereospecific analysis of triacylglycerols in camel (Camelus dromedarius) milk fat. Int. Dairy J. 20(12), 863–867 (2010)CrossRefGoogle Scholar
  36. 36.
    F. Blasi, D. Montesano, M. De Angelis, A. Maurizi, F. Ventura, L. Cossignani, M. Simonetti, P. Damiani, Results of stereospecific analysis of triacylglycerol fraction from donkey, cow, ewe, goat and buffalo milk. J. Food Compos. Anal. 21(1), 1–7 (2008)CrossRefGoogle Scholar
  37. 37.
    A.H. Ali, X. Zou, J. Huang, S.M. Abed, G. Tao, Q. Jin, X. Wang, Profiling of phospholipids molecular species from different mammalian milk powders by using ultra-performance liquid chromatography–electrospray ionization–quadrupole-time of flight-mass spectrometry. J. Food Compos. Anal. 62, 143–154 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and TechnologyJiangnan UniversityWuxiChina
  3. 3.Department of Food Science, Faculty of AgricultureZagazig UniversityZagazigEgypt
  4. 4.Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural ScienceEl Arish UniversityEl ArishEgypt

Personalised recommendations