Advertisement

Preparation and assessment of bioactive extracts having antioxidant activity from rice bran protein hydrolysates

  • Ahmed A. Zaky
  • Zhou Chen
  • Yangliu Liu
  • Siting Li
  • Yingmin JiaEmail author
Original Paper
  • 22 Downloads

Abstract

Rice bran protein concentrate (RBPC) was digested using four commercial enzymes, Alcalase, Trypsin, Protamex, and Flavourzyme at a various digestion time (2, 4, and 6 h), in order to produce antioxidant active peptides. The degree of hydrolysis (DH), total phenolic content (TPC), and antioxidant activity, including DPPH, ABTS, and metal chelating assays were examined. The obtained results indicated that DH varied with the type of enzyme used, Protamex > Trypsin > Alcalase > Flavourzyme, respectively. The optimum conditions of hydrolysis was 2 h using Flavourzyme, which gives protein content of 62.90 ± 0.77 mg/100 g, TPC of 893.75 ± 0.57 mg GAE/100 g, DPPH of 83.68 ± 0.97%, ABTS of 35.11 ± 0.66%, and a metal chelating activity of 53.90 ± 0.13%. These results indicate that the hydrolysate produced by digesting RBPC using Flavourzyme may contain bioactive components useful as natural food antioxidants. That can increase their potentials as natural food additives which could be useful in the food industry sector.

Keywords

Defatted rice bran Enzymatic hydrolysis Rice bran protein hydrolysate Antioxidant activity Flavourzyme 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31771951 and 31801510).

Compliance with ethical standards

Conflict of interest

The authors declared that there is no conflict of interest.

References

  1. 1.
    X. Guo, J. Zhang, Y. Ma, S. Tian, J. Food Process. Pres. 37, 245–253 (2013)CrossRefGoogle Scholar
  2. 2.
    X. Wang, H. Chen, X. Fu, S. Li, J. Wei, LWT-Food. Sci. Technol. 75, 93–99 (2017)Google Scholar
  3. 3.
    S. Phongthai, S.T. Lim, S. Rawdkuen, J. Cereal Sci. 70, 146–154 (2016)CrossRefGoogle Scholar
  4. 4.
    A.P. Adebiyi, A.O. Adebiyi, J. Yamashita, T. Ogawa, K. Muramoto, Eur. Food Res. Technol. 228, 553–563 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Teng, Y. Fang, X. Song, Y. Gao, Food Bioprod. Process. 89, 202–208 (2011)CrossRefGoogle Scholar
  6. 6.
    S.J. Lee, S.H. Cheong, Y.S. Kim, J.W. Hwang, H.J. Kwon, S.H. Kang, S.H. Moon, B.T. Jeon, P.J. Park, Food Chem. Toxicol. 62, 276–280 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Puchalska, M.L. Marina, M.C. Garcia, Food Chem. 148, 147–154 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Amagliani, J. O’Regan, A.L. Kelly, J.A. O’Mahony, J. Food Compos. Anal. 59, 18–26 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Wang, N.S. Hettiarachchy, M. Qi, W. Burks, T. Siebenmorgen, J. Agric. Food Chem. 47, 411–416 (1999)CrossRefGoogle Scholar
  10. 10.
    AOAC, Official Methods of Analysis, 20th edn. (AOAC 54 International, Gaithersburg, MA, 2016)Google Scholar
  11. 11.
    J.S. Hamada, J. Food Sci. 65, 305–310 (2000)CrossRefGoogle Scholar
  12. 12.
    J. Adler-Nissen, Enzymic Hydrolysis of Food Proteins (Elsevier Applied Science Publishers, New York, 1986)Google Scholar
  13. 13.
    O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  14. 14.
    S.Y. El-Faham, M.M.S. Ashour, A.M. Sharaf, A.A. Zaky, Curr. Sci. Int. 05(04), 529–542 (2016)Google Scholar
  15. 15.
    J. Oh, H. Jo, A.R. Cho, S.J. Kim, J. Han, Food Control 31, 403–409 (2013)CrossRefGoogle Scholar
  16. 16.
    U.K. Laemmli, Nature 227, 680–685 (1970)CrossRefGoogle Scholar
  17. 17.
    K. Elavarasan, K.V. Naveen, B.A. Shamasundar, J. Food Process. Pres. 38, 1207–1214 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Thamnarathip, J. Kamolwan, J. Anuvat, N. Sunee, T. Sukuntaros, V. Bongkosh, Int. J. Food Sci. Technol. 51, 194–202 (2016)CrossRefGoogle Scholar
  19. 19.
    H.J. Zhang, J. Wang, B.H. Zhang, H. Zhang, Int. J. Food Sci. Technol. 49, 1330–1336 (2014)CrossRefGoogle Scholar
  20. 20.
    W. Chanput, C. Theerakulkait, S. Nakai, J. Cereal Sci. 49, 422–428 (2009)CrossRefGoogle Scholar
  21. 21.
    L. Wattanasiritham, C. Theerakulkait, S. Wickramasekara, C.S. Maier, J.F. Stevens, Food Chem. 192, 156–162 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Thamnarathip, K. Jangchud, S. Nitisinprasert, B. Vardhanabhuti, J. Cereal Sci. 69, 329–335 (2016)CrossRefGoogle Scholar
  23. 23.
    L.Y. Aydemir, A. Yemenicioglu, Physiology 1, 1–3 (2013)Google Scholar
  24. 24.
    S. Phongthai, S. D'Amico, R. Schoenlechner, W. Homthawornchoo, S. Rawdkuen, Food Chem. 240, 156–164 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Zhu, J. Chen, X. Tang, L.Y. Xiong, J. Agric. Food Chem. 56, 2714–2721 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed A. Zaky
    • 1
    • 2
  • Zhou Chen
    • 1
  • Yangliu Liu
    • 1
  • Siting Li
    • 1
  • Yingmin Jia
    • 1
    Email author
  1. 1.Lab of Enzyme Engineering, School of Food and Chemical EngineeringBeijing Technology and Business UniversityBeijingChina
  2. 2.Department of Food TechnologyNational Research CenterGizaEgypt

Personalised recommendations