Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2481–2490 | Cite as

Microwave assisted convective drying of bitter gourd: drying kinetics and effect on ascorbic acid, total phenolics and antioxidant activity

  • Insha ZahoorEmail author
  • Mohammad Ali Khan
Original Paper
  • 23 Downloads

Abstract

Bitter gourds were dried by convective drying (CD) at 40, 50 and 60 °C and by microwave assisted convective drying (MACD) at 40, 50 and 60 °C combined with microwave power at 320, 400, and 480 W. In MACD, temperature and microwave power were applied synchronously. Quality of dried products in terms of ascorbic acid content, total phenolic content, total flavonoid content, vitamin A, DPPH radical scavenging activity, rehydration ratio, and total color change were compared. The drying rate increased with an increase in air temperature and microwave power. The MACD technique shortened the drying time compared to the CD. Prolonged drying time caused more deterioration of ascorbic acid and antioxidant activity than higher temperatures. In MACD, the total phenolic content and total flavonoid content did not degrade at elevated temperatures due to faster and homogenous drying. Moreover, the application of microwave power resulted in less reduction of Vitamin A and better retention of the surface color of the bitter gourd. Considering the drying time and quality attributes, microwave assisted convective drying would be a very promising alternative drying technique for bitter gourd.

Keywords

Bitter gourd Ascorbic acid Total phenolic content Antioxidant activity Drying kinetics 

Notes

Acknowledgements

The first author acknowledges the Department of Science and Technology, Ministry of Science and Technology, New Delhi, India, with thanks for providing INSPIRE fellowship.

References

  1. 1.
    E. Basch, S. Gabardi, C. Ulbricht, Am. J. Health-Syst. Pharm. 60(4), 356–359 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Deshaware, S. Gupta, R. Singhal, P.S. Variyar, Food Chem. 285, 156–162 (2019)CrossRefGoogle Scholar
  3. 3.
    J.K. Yan, L.X. Wu, Z.R. Qiao, W.D. Cai, H. Ma, Food Chem. 271, 588–596 (2019)CrossRefGoogle Scholar
  4. 4.
    D. Mehta, P. Prasad, V. Bansal, M.W. Siddiqui, A. Sharma, LWT-Food. Sci. Technol. 84, 479–488 (2017)Google Scholar
  5. 5.
    F.G.C. Ekezie, D.W. Sun, Z. Han, J.H. Cheng, Trends Food Sci. Technol. 67, 58–69 (2017)CrossRefGoogle Scholar
  6. 6.
    C. Carrión, A. Mulet, J.V. García-Pérez, J.A. Cárcel, Drying Technol. 36(15), 1814–1823 (2018)CrossRefGoogle Scholar
  7. 7.
    S.C. Reyes, R. Zuniga, P. Moyano, Biosys. Eng. 98(3), 310–318 (2007)CrossRefGoogle Scholar
  8. 8.
    P.W.Y. Sham, C.H. Scaman, T.D. Durance, J. Food Sci. 66(9), 1341–1347 (2001)CrossRefGoogle Scholar
  9. 9.
    Y. Soysal, Z. Ayhan, O. Eştürk, M.F. Arıkan, Biosys. Eng. 103(4), 455–463 (2009)CrossRefGoogle Scholar
  10. 10.
    D. Kumar, S. Prasad, G.S. Murthy, Food Sci. Technol. 51(2), 221–232 (2014)Google Scholar
  11. 11.
    M. Zielinska, A. Michalska, Food Chem. 212, 671–680 (2016)CrossRefGoogle Scholar
  12. 12.
    W. Jin, M. Zhang, W. Shi, Drying Technol. 37(3), 387–397 (2019)CrossRefGoogle Scholar
  13. 13.
    S. Ranganna, Handbook of analysis and quality control for fruit and vegetable products, 3rd edn. (Tata McGraw-Hill, New Delhi, 1986)Google Scholar
  14. 14.
    B. Yousuf, A.K. Srivastava, LWT-Food Sci. Technol. 79, 568–578 (2017)CrossRefGoogle Scholar
  15. 15.
    O.K. Chun, D.O. Kim, C.Y. Lee, J. Agri, Food Chem. 51(27), 8067–8072 (2003)CrossRefGoogle Scholar
  16. 16.
    C.C. Chang, M.H. Yang, H.M. Wen, J.C. Chern, J Food Drug Anal. 10(3), 178–182 (2002)Google Scholar
  17. 17.
    E. Horuz, H. Bozkurt, H. Karataş, M. Maskan, Food Chem. 230, 295–305 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Yousuf, A.K. Srivastava, Int. j Bio. Macromol. 104, 1030–1038 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Erbay, F. Icier, J. Food Eng. 91(4), 533–541 (2009)CrossRefGoogle Scholar
  20. 20.
    P.H.S. Santos, M.A. Silva, Drying Technol. 26(12), 1421–1437 (2008)CrossRefGoogle Scholar
  21. 21.
    S.Y. Leong, I. Oey, Food Chem. 133(4), 1577–1587 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Wojdyło, A. Figiel, K. Lech, P. Nowicka, J. Oszmiański, Food Bioprocess Technol. 7(3), 829–841 (2014)CrossRefGoogle Scholar
  23. 23.
    F. Que, L. Mao, X. Fang, T. Wu, Int. J. Food Sci. Technol. 43(7), 1195–1201 (2008)CrossRefGoogle Scholar
  24. 24.
    K. Sharma, E.Y. Ko, A.D. Assefa, S. Ha, S.H. Nile, E.T. Lee, S.W. Park, J. Food Drug Anal. 23(2), 243–252 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Kamiloglu, G. Toydemir, D. Boyacioglu, J. Beekwilder, R.D. Hall, E. Capanoglu, Crit. Rev. Food Sci. Nutr. 56(sup1), S110–S129 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Arslan, M.M. Özcan, Food Bioprod. Process. 89(4), 504–513 (2011)CrossRefGoogle Scholar
  27. 27.
    I. Karabulut, A. Topcu, A. Duran, S. Turan, B. Ozturk, LWT-Food Sci. Technol. 40(5), 753–758 (2007)CrossRefGoogle Scholar
  28. 28.
    Z.W. Cui, S.Y. Xu, D.W. Sun, Drying Technol. 22(3), 563–575 (2004)CrossRefGoogle Scholar
  29. 29.
    J. Samoticha, A. Wojdyło, K. Lech, LWT-Food Sci. Technol 66, 484–489 (2016)CrossRefGoogle Scholar
  30. 30.
    E. Horuz, H. Bozkurt, H. Karataş, M. Maskan, J. Food Meas. Charact. 12(1), 243–256 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Miranda, H. Maureira, K. Rodriguez, A. Vega-Gálvez, J. Food Eng. 91(2), 297–304 (2009)CrossRefGoogle Scholar
  32. 32.
    R.F. Schiffmann, Microwave and dielectric drying, in Handbook of industrial drying, ed. by A.S. Mujumdar (CRC Press, New York, 1995), pp. 345–372Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Post-Harvest Engineering & Technology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations