Effect of date syrup on physicochemical, pasting, textural, rheological and morphological properties of sweet potato starch

  • Deepshikha
  • Piyush KashyapEmail author
  • Navdeep Jindal
Original Paper


The effect of date syrup on sweet potato starch was investigated at 20°Brix and three starch and date syrup ratios (1:1, 1:2 and 1:3). Native and date syrup added sweet potato starches were evaluated for physicochemical, pasting, textural, rheological and morphological characteristics. With increase in ratio of date syrup in sweet potato starch water binding capacity and paste clarity decreased whereas oil binding capacity, sedimentation value and swelling power increased. At all the starch-date syrup ratios lower peak and final viscosities were observed as compared to the native starch. Texture profile results indicated that the hardness and springiness increased up to 1:2 ratio and then decreased. The rheological properties showed higher values of storage modulus than loss modulus and exhibited weak gel behaviour for all the starch gels. The decreased value of loss tangent (tan δ) showed that sample with date syrup was more elastic in nature. Scanning electron microscopy analysis revealed that addition of date syrup altered the starch morphology. Increase in syrup ratio resulted in aggregation of starch granules and slight patches of syrup were also seen on starch granules. This study suggested that date syrup find many practical applications in starch based industries as it is natural sweetener with many nutrients.


Date syrup Pasting Rheological properties Starch 



Authors acknowledge the laboratories facilities provide by SLIET, Longowal, India, Thapar University, Patiala, India and Panjab Agriculture University, Ludhiana, India.

Compliance with ethical standards

Conflict of interest

Authors have no conflict of interest.


  1. 1.
    A.M. Smith, Biomacromol 2, 335 (2001)CrossRefGoogle Scholar
  2. 2.
    F. Gao, D. Li, C.H. Bi, Z.H. Mao, B. Adhikari, Carbohydr. Polym. 103, 310 (2014)CrossRefGoogle Scholar
  3. 3.
    F.B. Ahmad, P.A. Williams, Biopolymers 50, 401 (1999)CrossRefGoogle Scholar
  4. 4.
    R. Sharma, D.P.S. Oberoi, D.S. Sogi, B.S. Gill, J. Food Process. Pres. 33, 401 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Hoover, N. Senanayake, J. Food Biochem. 20, 65 (1996)CrossRefGoogle Scholar
  6. 6.
    I.O. Mohamed, J. Babucurr, Starch/Stärke 67, 709 (2015)CrossRefGoogle Scholar
  7. 7.
    I.O. Mohamed, E. Hassan, J. Food Res. 5, 13 (2016)CrossRefGoogle Scholar
  8. 8.
    V.M. Acquarone, M.A. Rao, Carbohydr. Polym. 51, 451 (2003)CrossRefGoogle Scholar
  9. 9.
    Y.H. Chang, S.T. Lim, B. Yoo, J. Food Eng. 64, 521 (2004)CrossRefGoogle Scholar
  10. 10.
    L. Wang, J. Xu, X. Fan, Q. Wang, P. Wang, Y. Zhang, L. Cui, J. Yuan, Y. Yu, Food Hydrocoll. 61, 531 (2016)CrossRefGoogle Scholar
  11. 11.
    M.H. Baek, B. Yoo, S.-T. Lim, Food Hydrocoll. 18, 133 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Gunaratne, S. Ranaweera, H. Corke, Carbohydr. Polym. 70, 112 (2007)CrossRefGoogle Scholar
  13. 13.
    P.A. Sopade, P.J. Halley, L.L. Jumming, Carbohydr. Polym. 58, 311 (2004)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, Q. Tong, W. Zhu, F. Ren, J. Food Eng. 114, 255 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Cartier, J. Woods, E. Sisnour, J. Allen, E. Ford, L. Githinji, Y. Xu, J. Food Meas. Charact. 11, 1333 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Singh, C.S. Raina, A.S. Bawa, D.C. Saxena, J. Food Sci. 70(6), 373 (2005)CrossRefGoogle Scholar
  17. 17.
    R.P. Rathod, U.S. Annapure, J. Food Meas. Charact. 10, 715 (2016)CrossRefGoogle Scholar
  18. 18.
    M.A. Al-Farsi, C.Y. Lee, Crit. Rev. Food Sci. Nutr. 48, 877 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Farahnky, M. Mardani, G.H. Mesbahi, M. Majzoobi, M.T. Golmakani, J. Agric. Sci. Technol. 18, 657 (2016)Google Scholar
  20. 20.
    A.O.A.C., Official Methods of Analysis of the Association of Official Analytical Chemists, 15th edn. (Washington, DC, 1990)Google Scholar
  21. 21.
    D.G. Medcalf, K.A. Gilles, Cereal Chem. 42, 546 (1965)Google Scholar
  22. 22.
    L. Wang, B. Xie, J. Shi, S. Xue, Q. Deng, Y. Wei, B. Tian, Food Hydrocoll. 24, 208 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Hormdok, A. Noomhorm, LWT Food Sci. Technol. 40, 1723 (2007)CrossRefGoogle Scholar
  24. 24.
    N.S. Sodhi, N. Singh, Food Chem. 80, 99 (2003)CrossRefGoogle Scholar
  25. 25.
    H.W. Leach, L.D. McCowen, T.J. Schoch, Cereal Chem. 36, 534 (1959)Google Scholar
  26. 26.
    A. Mrabet, R. Rodriguez-Arcos, R. Guillen-Bejarano, N. Chaira, A. Ferchichi, A. Jimenez-Araujo, J. Agric. Food Chem. 60, 3658 (2012)CrossRefGoogle Scholar
  27. 27.
    C.G. Biliaderis, D.J. Prokopowich, Carbohydr. Polym. 23, 193 (1994)CrossRefGoogle Scholar
  28. 28.
    S.A.S. Craig, C.C. Maningat, P.A. Seib, R.C. Hoseney, Cereal Chem. 66, 173 (1989)Google Scholar
  29. 29.
    I.O. Mohamed, J. Babucurr, Food Sci. Technol. Int. 23, 550 (2017)CrossRefGoogle Scholar
  30. 30.
    R.D. Spies, R.C. Hoseney, Cereal Chem. 59, 128 (1982)Google Scholar
  31. 31.
    E. Chiotelli, A. Rolee, M. Le Meste, J. Agric. Food Chem. 48, 1327 (2000)CrossRefGoogle Scholar
  32. 32.
    H. Zhou, J. Wang, J. Li, X. Fang, Y. Sun, Starch/Stärke 63, 323 (2011)CrossRefGoogle Scholar
  33. 33.
    I.M. Park, A.M.F. Ibanez, F. Zhong, C.F. Shoemaker, Starch/Stärke 59, 388 (2007)CrossRefGoogle Scholar
  34. 34.
    D.N. Zhou, B. Zhang, B. Chen, H.Q. Chen, Food Chem. 230, 516 (2017)CrossRefGoogle Scholar
  35. 35.
    J.P. Mua, D.S. Jackson, J. Agric. Food Chem. 45(10), 3840 (1997)CrossRefGoogle Scholar
  36. 36.
    Q. Sun, Y. Xing, C. Qiu, L. Xiong, PLoS ONE 9(4), e95862 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Krystyjan, W. Ciesielski, G. Khachatryan, M. Sikora, P. Tomasik, LWT Food Sci. Technol. 60, 131 (2015)CrossRefGoogle Scholar
  38. 38.
    P.H. Marfil, A.C. Anhe, V.R. Telis, Food Biophys. 7, 236 (2012)CrossRefGoogle Scholar
  39. 39.
    S. Ikeda, K. Nishinari, J. Agr. Food Chem. 49, 4436 (2001)CrossRefGoogle Scholar
  40. 40.
    L. Chen, Q. Tong, F. Ren, G. Zhu, Int. J. Biol. Macromol. 66, 325 (2014)CrossRefGoogle Scholar
  41. 41.
    I.G. Mandala, Viscoelastic properties of starch and non-starch thickeners in simple mixtures or model food, in Viscoelasticity: From Theory to Biological Applications, ed. by J. de Vicente (InTech, England, 2012), p. 217Google Scholar
  42. 42.
    V. Rasper, J. Sci. Food Agric. 22, 572 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Engineering & TechnologySant Longowal Institute of Engineering & TechnologyLongowalIndia

Personalised recommendations