Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2310–2317 | Cite as

Identification and quantification of anthocyanins in seeds of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces of varying seed coat pigmentation

  • Armelle T. TsamoEmail author
  • Mustapha Mohammed
  • Peter P. Ndibewu
  • Felix D. DakoraEmail author
Original Paper


The present study identified and quantified the anthocyanin pigments in seed of eight Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces of variable seed coat pigmentation. The analysis was carried out using ultra-performance liquid chromatography coupled with a photodiode array detector and mass spectrometry. Although the findings revealed similar anthocyanin profiles in seeds of the eight landraces tested, the relative concentrations of the individual anthocyanin compounds showed marked variations. Delphinidin-3-O-glucoside, cyanidin-3-O-glucoside and peonidin-3-O-glucoside were the most abundant anthocyanins, with concentrations ranging between 21.4–239.0, 23.6–130.6 and 21.4–135.4 µg/g of dry seed, respectively in seeds of the test landraces, while total anthocyanins ranged between 95 and 505 µg/g of dry seed. The preponderance of delphinidin 3-O-glucoside was observed in the black and brown mottled seeds. This study is the first report regarding the profile and concentrations of anthocyanins in Kersting’s groundnut and suggests that the seeds of this underutilized grain legume can potentially be exploited as a natural source of anthocyanins for the development of cosmetic, food and pharmaceutical products.


Kersting’s groundnut UPLC–DAD–qTOF-MS Anthocyanins Natural antioxidants Colorants 



Kersting’s groundnuts


Electrospray ionization


Liquid chromatography


Mass spectrometry


Photodiode array detector


Standard deviation


Total anthocyanin content







We are grateful to the South African Research Chair in Agrochemurgy and Plant Symbioses, the National Research Foundation and the Tshwane University of Technology for financial support. ATT is postdoctoral fellow under the South African Research Chair in Agrochemurgy and Plant Symbioses.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    P. Chivenge, T. Mabhaudhi, A.T. Modi, P. Mafongoya, The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health. 12, 5685–5711 (2015)CrossRefGoogle Scholar
  2. 2.
    R. Adu-Gyamfi, J. Fearon, T. Bayorbor, I. Dzomeku, V. Avornyo, The status of Kersting’s groundnut (Macrotyloma Geocarpum [Harms] Marechal and Baudet) An underexploited legume in Northern Ghana. Outlook Agric. 40, 259–262 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Mohammed, S.K. Jaiswal, E.N. Sowley, B.D. Ahiabor, F.D. Dakora, Symbiotic N2 fixation and grain yield of endangered Kersting’s groundnut landraces in response to soil and plant associated Bradyrhizobium inoculation to promote ecological resource-use efficiency. Front. Microbiol. (2018). Google Scholar
  4. 4.
    O. Ajayi, F. Oyetayo, Potentials of Kerstingiella geocarpa as a health food. J. Med. Food 12, 184–187 (2009)CrossRefGoogle Scholar
  5. 5.
    F.D. Dakora, Nodule function in symbiotic Bambara groundnut (Vigna subterranea L.) and Kersting’s bean (Macrotyloma geocarpum L.) is tolerant of nitrate in the root medium. Ann. Bot. 82, 687–690 (1998)CrossRefGoogle Scholar
  6. 6.
    P. Assogba, E.B. Ewedje, A. Dansi, Y. Loko, A. Adjatin, M. Dansi, A. Sanni, Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut (Macrotyloma geocarpum (Harms) Maréchal et Baudet) cultivars of Benin. Genet. Resour. Crop Evol. 63, 513–529 (2016)CrossRefGoogle Scholar
  7. 7.
    M.A.T. Ayenan, V.A. Ezin, Potential of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet] and prospects for its promotion. Agric. Food Secur. 5, 10 (2016)CrossRefGoogle Scholar
  8. 8.
    A.H. Bampuori, Effect of traditional farming practices on the yield of indigenous Kersting’s Groundnut (Macrotyloma geocarpum Harms) crop in the Upper West Region of Ghana. J. Dev. Sustain. Agric. 2, 128–144 (2007)Google Scholar
  9. 9.
    T. Bayorbor, I. Dzomeku, V. Avornyo, M. Opoku-Agyeman, Morphological variation in Kersting’s groundnut (Kerstigiella geocarpa Harms) landraces from northern Ghana. Agric. Biol. JN Am. 1, 290–295 (2010)CrossRefGoogle Scholar
  10. 10.
    M.A. Chauvin, M. Whiting, C.F. Ross, The influence of harvest time on sensory properties and consumer acceptance of sweet cherries. HortTechnology 19, 748–754 (2009)CrossRefGoogle Scholar
  11. 11.
    G.R. Takeoka, L.T. Dao, G.H. Full, R.Y. Wong, L.A. Harden, R.H. Edwards, J.D.J. Berrios, Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J. Agric. Food Chem. 45, 3395–3400 (1997)CrossRefGoogle Scholar
  12. 12.
    M.-G. Choung, B.-R. Choi, Y.-N. An, Y.-H. Chu, Y.-S. Cho, Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 51, 7040–7043 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Castaneda-Ovando, M. de Lourdes Pacheco-Hernández, M.E. Páez-Hernández, J.A. Rodríguez, C.A. Galán-Vidal, Chemical studies of anthocyanins: a review. Food Chem. 113, 859–871 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Hoffmann, Natural edible dye preparation from bean husks giving red shades. Google Patents (1983)Google Scholar
  15. 15.
    L. Chalker-Scott, Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1–9 (1999)CrossRefGoogle Scholar
  16. 16.
    H. Matsumoto, Y. Nakamura, S. Tachibanaki, S. Kawamura, M. Hirayama, Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J. Agric. Food Chem. 51, 3560–3563 (2003)CrossRefGoogle Scholar
  17. 17.
    W.-H. Shin, S.-J. Park, E.-J. Kim, Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci. 79, 130–137 (2006)CrossRefGoogle Scholar
  18. 18.
    T.C. Wallace, Anthocyanins in cardiovascular disease. Adv. Nutr. 2, 1–7 (2011)CrossRefGoogle Scholar
  19. 19.
    J.A. Joseph, B. Shukitt-Hale, N.A. Denisova, D. Bielinski, A. Martin, J.J. McEwen, P.C. Bickford, Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 19, 8114–8121 (1999)CrossRefGoogle Scholar
  20. 20.
    S. Zafra-Stone, T. Yasmin, M. Bagchi, A. Chatterjee, J.A. Vinson, D. Bagchi, Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51, 675–683 (2007)CrossRefGoogle Scholar
  21. 21.
    K. Koh, J.E. Youn, H.-S. Kim, Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties. J. Food Sci. Technol. 51, 377–381 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Salinas Moreno, G.S. Sánchez, D.R. Hernández, N.R. Lobato, Characterization of anthocyanin extracts from maize kernels. J. Chromatogr. Sci. 43, 483–487 (2005)CrossRefGoogle Scholar
  23. 23.
    M.-K. Kim, H.-A. Kim, K. Koh, H.-S. Kim, Y.S. Lee, Y.H. Kim, Identification and quantification of anthocyanin pigments in colored rice. Nutr. Res. Pract. 2, 46–49 (2008)CrossRefGoogle Scholar
  24. 24.
    D.-O. Kim, O.K. Chun, Y.J. Kim, H.-Y. Moon, C.Y. Lee, Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 51, 6509–6515 (2003)CrossRefGoogle Scholar
  25. 25.
    P. Mena, E.M. Sánchez-Salcedo, M. Tassotti, J.J. Martínez, F. Hernández, D. Del Rio, Phytochemical evaluation of eight white (Morus alba L.) and black (Morus nigra L.) mulberry clones grown in Spain based on UHPLC-ESI-MSn metabolomic profiles. Food Res. Int. 89, 1116–1122 (2016)CrossRefGoogle Scholar
  26. 26.
    M.A. Farag, H.A. Gad, A.G. Heiss, L.A. Wessjohann, Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC–MS coupled to chemometrics. Food Chem. 151, 333–342 (2014)CrossRefGoogle Scholar
  27. 27.
    A.T. Tsamo, P.P. Ndibewu, F.D. Dakora, Phytochemical profile of seeds from 21 Bambara groundnut landraces via UPLC-qTOF-MS. Food Res. Int. 112, 160–168 (2018)CrossRefGoogle Scholar
  28. 28.
    A.T. Tsamo, H. Mohammed, M. Mohammed, P.P. Ndibewu, F.D. Dakora, Seed coat metabolite profiling of cowpea (Vigna unguiculata L.) accessions from Ghana using UPLC-PDA-QTOF-MS and chemometrics. Nat. Prod. Res. (2018). Google Scholar
  29. 29.
    E.-S.M. Abdel-Aal, J.C. Young, I. Rabalski, Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 54, 4696–4704 (2006)CrossRefGoogle Scholar
  30. 30.
    R. Attree, B. Du, B. Xu, Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind. Crops Prod. 67, 448–456 (2015)CrossRefGoogle Scholar
  31. 31.
    T.N.H. Lai, M.-F. Herent, J. Quetin-Leclercq, T.B.T. Nguyen, H. Rogez, Y. Larondelle, C.M. André, Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chem. 138, 1421–1430 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Shahidi, M. Naczk, Phenolics in Food and Nutraceuticals (CRC Press, Boca Raton, 2003)Google Scholar
  33. 33.
    B. Singh, J.P. Singh, A. Kaur, N. Singh, Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res. Int. 101, 1–16 (2017)CrossRefGoogle Scholar
  34. 34.
    A. López, T. El-Naggar, M. Dueñas, T. Ortega, I. Estrella, T. Hernández, M.P. Gómez-Serranillos, O.M. Palomino, M.E. Carretero, Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 138, 547–555 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Dueñas, C. Martínez-Villaluenga, R.I. Limón, E. Peñas, J. Frias, Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Res. Int. 70, 55–63 (2015)CrossRefGoogle Scholar
  36. 36.
    K.-H. Han, T. Kitano-Okada, J.-M. Seo, S.-J. Kim, K. Sasaki, K.-I. Shimada, M. Fukushima, Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. J Funct. Foods. 14, 692–701 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Wu, R.L. Prior, Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J. Agric. Food Chem. 53, 2589–2599 (2005)CrossRefGoogle Scholar
  38. 38.
    L.O. Ojwang, L. Dykes, J.M. Awika, Ultra performance liquid chromatography–tandem quadrupole mass spectrometry profiling of anthocyanins and flavonols in cowpea (Vigna unguiculata) of varying genotypes. J. Agric. Food Chem. 60, 3735–3744 (2012)CrossRefGoogle Scholar
  39. 39.
    E. Pale, M. Nacro, M. Vanhaelen, R. Vanhaelen-Fastré, Anthocyanins from bambara groundnut (Vigna subterranea). J. Agric. Food Chem. 45, 3359–3361 (1997)CrossRefGoogle Scholar
  40. 40.
    M.-G. Choung, I.-Y. Baek, S.-T. Kang, W.-Y. Han, D.-C. Shin, H.-P. Moon, K.-H. Kang, Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 49, 5848–5851 (2001)CrossRefGoogle Scholar
  41. 41.
    A.M. Díaz, G.V. Caldas, M.W. Blair, Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 43, 595–601 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryTshwane University of TechnologyPretoriaSouth Africa
  2. 2.Department of Organic ChemistryUniversity of Yaoundé IYaoundeCameroon
  3. 3.Department of Crop SciencesTshwane University of TechnologyPretoriaSouth Africa
  4. 4.Tshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations