Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2288–2297 | Cite as

Antimicrobial and antioxidant properties of spray dried Murraya koenigii leaf powder

  • Vandana Sablania
  • Sowriappan John Don BoscoEmail author
  • Tanveer Ahmed
  • V. Venkateswara Sarma
Original Paper


The study was directed to analyse the influence of spray drying on antioxidant and antimicrobial activities of Murraya koenigii leaf powder. Tray dried (S1) and spray dried (S3) M. koenigii leaf powder was analysed for various antioxidant and antimicrobial activities. Spray dried powder (S3) exhibited highest DPPH scavenging `activity (90.67%) in comparison to tray dried (S1) powder (66.81) at 1 mg/mL. S1 showed inhibition concentration (IC50) of 1.86 mg/mL for reducing 50% of hydroxyl radicals whereas S3 resulted in IC50 value of 5.02 mg/mL to inhibit the peroxide free radicals. S3 exhibited higher superoxide chelating activity (74%) and iron chelating activity (32.33%) in comparison to S1. S3 was found to be more efficient against pathogenic bacteria (such as Yersinia enterocolitica, Klebsiella pneumonia, Enterococcus faecalis, Pseudomonas aeruginosa) and yeast (Candida albicans) with the inhibition zone of 20, 17, 12, 14, 17 mm respectively.


Murraya koenigii leaf Spray drying Antioxidant assay Antimicrobial activities Free radicals 



The authors would be grateful to UGC for providing Junior Research Fellowship, Department of Food Science and Technology, Pondicherry University. We would also be grateful to acknowledge the Department of Biotechnology for rendering the necessary laboratory amenities, Pondicherry University, Pondicherry, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    R.Y. Gan, L. Kuang, X.R. Xu, Y. Zhang, E.Q. Xia, F.L. Song, Molecules 15(9), 5988–5997 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Dragland, H. Senoo, K. Wake, K. Holte, R. Blomhoff, J. Nutr. 133(5), 1286–1290 (2003)CrossRefGoogle Scholar
  3. 3.
    S. Nishaa, M. Vishnupriya, J.M. Sasikumar, H.P. Christabel, V.K. Gopalakrishnan, Asian J. Pharm. Clin. Res. 5(4), 0974–2441 (2012)Google Scholar
  4. 4.
    R.H. Liu, Am. J. Clin. Nutr. 78, 517–520 (2003)CrossRefGoogle Scholar
  5. 5.
    I. Biskup, I. Golonka, A. Gamian, Z. Sroka, Postepy Hig Med Dosw (online) 67, 958–963 (2013)CrossRefGoogle Scholar
  6. 6.
    A.K. Biswas, M.K. Chatli, J. Sahoo, Food Chem. 133, 467–472 (2012)CrossRefGoogle Scholar
  7. 7.
    D.R. Izidoro, M.-R. Sierakowski, C.W.I. Haminiuk, C. Fernandes de Souza, A. de Paula Scheer, J. Food Eng. 104, 639–648 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Sadeghi, F. Shahidi, S.A. Mortazavi, M.N. Mahalati, World Appl. Sci. J. 3(1), 34–39 (2008)Google Scholar
  9. 9.
    V. Sablania, S.J.D. Bosco, Powder Technol. 335, 35–41 (2018)CrossRefGoogle Scholar
  10. 10.
    P. Singh, T. Wilson, D. Luthria, M.R. Freeman, R. Scott, B. Dan, S. Shah, S. Siva, V. Nicholi, Food Chem. 127, 80–85 (2011)CrossRefGoogle Scholar
  11. 11.
    M.A. Shah, S.J.D. Bosco, S.A. Mir, J. Food Packag. Shelf Life 3, 31–38 (2015)CrossRefGoogle Scholar
  12. 12.
    S.K. Chung, T. Osawa, S. Kawakishi, Biosci. Biotechnol. Biochem. 61, 118–123 (1997)CrossRefGoogle Scholar
  13. 13.
    J.P. Adjimani, P. Asare, Toxicol. Rep. 2, 721–728 (2015)CrossRefGoogle Scholar
  14. 14.
    B. Sharifi, S.A.H. Goli, Y. Maghsoudlou, Ind. Crops Prod. 104, 111–119 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Soler-Rivas, J.C. Espin, H.J. Wichers, Phytochem. Anal. 11, 330–338 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Bashir, T. Usmani, S. Haripriya, T. Ahmed, J. Biol. Macromol. 3, 153 (2017). Google Scholar
  17. 17.
    A. Haijuan, H. Wang, Y. Lan, Y. Hashi, S. Chen, J. Pharm. Biomed. Anal. 85, 295–304 (2013)CrossRefGoogle Scholar
  18. 18.
    B. Vongsak, S. Pongtip, G. Wandee, J. Chromatograph. Sci. 52, 641–645 (2014)CrossRefGoogle Scholar
  19. 19.
    R.S. Verma, R.C. Padalia, V. Arya, A. Chauhan, Ind. Crops Prod. 36, 343–348 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Oyaizu, J. Nutr. 44, 307–315 (1986)Google Scholar
  21. 21.
    C.K. Venil, A.R. Khasim, C.A. Aruldass, W.A. Ahmad, I. Biodeter, Biodegradation 113, 350–356 (2016)CrossRefGoogle Scholar
  22. 22.
    K. Pavithra, S. Vadivukkarasi, Food Sci. Hum. Wellness 4, 42–46 (2015)CrossRefGoogle Scholar
  23. 23.
    E. Gulcin, E. Kirecci, F. Akkemik, O. Topal, Hisar. Turk J. Biol. 34, 175–188 (2010)Google Scholar
  24. 24.
    R. Santiago Adame, L. Medina Torres, J.A. Gallegos Infante, F. Calderas, R.F. GonzálezLaredo, N.E. Rocha Guzman, M.J. Bernad Bernad, LWT Food Sci. Technol. 64(2), 571–577 (2015)CrossRefGoogle Scholar
  25. 25.
    S.B. Araujo-Díaza, C. Leyva-Porrasb, P. Aguirre-Bãnuelosc, C. Álvarez-Salasd, Z. Saavedra-Leose, Carbohydrate Polym. 167, 317–325 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Robak, R.J. Gryglewski, Biochem. Pharmacol. 37, 837–841 (1988)CrossRefGoogle Scholar
  27. 27.
    O.K. Chun, D.K. Kim, C.Y. Lee, J. Agri. Food Chem. 51, 8067–8072 (2003)CrossRefGoogle Scholar
  28. 28.
    D. Ahmed, M.M. Khan, R. Saeed, Antioxidants 4, 394–409 (2015)CrossRefGoogle Scholar
  29. 29.
    İ. Gulcin, Z. Huyut, M. Elmastas, H.Y. Aboul-Enein, Arabian J. Chem. 3, 43–53 (2010)CrossRefGoogle Scholar
  30. 30.
    F. Khanum, K.R. Anilakumar, K.R. Sudarshana Krishna, K.R. Viswanathan, K.J. Santhanam, Plant Foods Human Nutr. 55, 347–355 (2000)CrossRefGoogle Scholar
  31. 31.
    L.E. Hill, C. Gomes, T.M. Taylor, LWT Food Sci. Technol. 51, 86–93 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vandana Sablania
    • 1
  • Sowriappan John Don Bosco
    • 1
    Email author
  • Tanveer Ahmed
    • 2
  • V. Venkateswara Sarma
    • 2
  1. 1.Department of Food Science and TechnologyPondicherry UniversityPuducherryIndia
  2. 2.Department of BiotechnologyPondicherry UniversityPuducherryIndia

Personalised recommendations