Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2265–2274 | Cite as

Characterization of tannins from two wild blackberries (Rubus spp) by LC–ESI–MS/MS, NMR and antioxidant capacity

  • Oscar Abel Sánchez-Velázquez
  • Julio Montes-Ávila
  • Jorge Milán-Carrillo
  • Cuauhtémoc Reyes-Moreno
  • Saraid Mora-Rochin
  • Edith-Oliva Cuevas-RodríguezEmail author
Original Paper
  • 30 Downloads

Abstract

Tannins are phenolics found in fruits such as wild Rubus berries. The aim of this study was to determine the profile by LC–ESI–MS/MS and NMR, antioxidant capacity (AOX) of the tannins in two Mexican wild blackberries. Fractions rich in tannins (FRT) were isolated using different solvents and chromatographic resins. The LC–ESI–MS/MS and NMR results showed that catechin and epicatechin (m/z 289−1), which are precursors of proanthocyanidins, as well as other six oligomeric forms of ellagitannins (m/z 301−1) were found in R. Liebmannii, whereas in R. Palmeri, only ellagitannins were found, highlighting oligomeric forms of lambertianins and sanguiins (m/z 783−1 to 1869−1). The purification pathway made it possible to increase the AOX 19.7 times from fruits to FRT showing strong positive correlations (R2 > 0.9) with total phenolic content. This study provided a good assessment of the tannin composition of wild blackberries from the Northwest of Mexico and their bioactivity as a potential edible source.

Keywords

Wild blackberries Tannins LC–ESI–MS/MS NMR Antioxidant capacity Rubus 

Notes

Acknowledgements

This research was supported by Universidad Autónoma de Sinaloa (Grants PROFAPI2014 and PROFAPI2015). Oscar Abel Sánchez-Velázquez’s scholarship was provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT). The authors would also like to thank Dr. Alfredo Leal Orduño for his invaluable support of this research.

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11694_2019_146_MOESM1_ESM.docx (62 kb)
Supplementary file1 (DOCX 61 kb)

References

  1. 1.
  2. 2.
    A. Jiménez-Arellanos, J. Cornejo-Garrido, G. Rojas-Bribiesca, M.P. Nicasio-Torres, S. Said-Fernández, B.D. Mata-Cárdenas, G.M. Molina-Salinas, J. Tortoriello, M. Meckes-Fischer, J Evid Based Complementary Altern Med. (2012).  https://doi.org/10.1155/2012/503031 Google Scholar
  3. 3.
    IBUNAM (Institute of Biology, National Autonomous University of Mexico), Index of Genus: Rubus (2018). https://unibio.unam.mx/generosmexu/index.jsp. Accessed 03 August 2018.
  4. 4.
    J. Reyes-Carmona, G.G. Yousef, R.A. Martínez-Peniche, M.A. Lila, J. Food Sci. (2005).  https://doi.org/10.1111/j.1365-2621.2005.tb11498.x Google Scholar
  5. 5.
    A.D. Alanís, F. Calzada, R. Cedillo-Rivera, M. Meckes, Phytother Res. (2003).  https://doi.org/10.1002/ptr.1150 Google Scholar
  6. 6.
    E. Barbosa, F. Calzada, R. Campos, J Ethnopharmacol. (2006).  https://doi.org/10.1016/j.jep.2006.05.026 Google Scholar
  7. 7.
    E. O. Cuevas-Rodríguez, V. P. Dia, G. G. Yousef, P. A. Garcia-Saucedo, J.  López-Medina, O. Paredes-López, E. Gonzalez-de Mejia, M. A. Lila, J. Agric. Food Chem. (2010) https://doi.org/10.1021/jf102590p
  8. 8.
    J. Lee, M. Dossett, C.E. Finn, Food Chem. (2012).  https://doi.org/10.1016/j.foodchem.2011.08.022 Google Scholar
  9. 9.
    I. Ky, A. Le Floch, L. Zeng, L. Pechamat, M. Jourdes, P. L. Teissedre, Enc. Food Health (2016).  https://doi.org/10.1016/B978-0-12-384947-2.00683-8
  10. 10.
    J. Montes-Ávila, G. López-Angulo, F. Delgado-Vargas, Fruit Veg. Phytochem. (2018).  https://doi.org/10.1002/9781119158042.ch13
  11. 11.
    T.J. Hager, L.P. Howard, R. Liyanage, J.O. Lay, R.L. Prior, J. Agric. Food Chem. (2008).  https://doi.org/10.1021/jf071990b Google Scholar
  12. 12.
    W. Mullen, J. McGinn, M.E.J. Lean, M.R. MacLean, P. Gardner, G.G. Duthie, T. Yokota, A. Crozier, J. Agric. Food Chem. (2002).  https://doi.org/10.1021/jf020140n Google Scholar
  13. 13.
    W. Mullen, T. Yokota, M.E.J. Lean, A. Croizer, Phytochem. (2003).  https://doi.org/10.1016/S0031-9422(03)00281-4 Google Scholar
  14. 14.
    C. Mertz, V. Cheynier, Z. Günata, P. Brat, J. Agric. Food Chem. (2007).  https://doi.org/10.1021/jf071475d Google Scholar
  15. 15.
    M.M. Kool, D.J. Comeskey, J.M. Cooney, T.K. McGhie, Food Chem. (2010).  https://doi.org/10.1016/j.foodchem.2009.09.039 Google Scholar
  16. 16.
    F. Melone, R. Saladino, H. Lange, C. Crestini, J. Agric. Food Chem. (2013).  https://doi.org/10.1021/jf401477c Google Scholar
  17. 17.
    G. Azofeifa, S. Quesada, A.M. Pérez, F. Vaillant, A. Michel, J. Food Comp Anal. (2015).  https://doi.org/10.1016/j.jfca.2015.01.015 Google Scholar
  18. 18.
    G.-I. Hidalgo, M. Almajano, Antiox (2017).  https://doi.org/10.3390/antiox6010007 Google Scholar
  19. 19.
    Z.-H. Li, H. Guo, W.-B. Xu, J. Ge, X. Li, M. Alimu, D.-J. He, J. Chromatogr. Sci. (2016).  https://doi.org/10.1093/chromsci/bmw016 Google Scholar
  20. 20.
    F. Bastian, Y. Ito, E. Ogahara, N. Ganeko, T. Hatano, H. Ito, Molecules (2018).  https://doi.org/10.3390/molecules23061346 Google Scholar
  21. 21.
    K. I. Nurmi, V. Ossipov, E. Haukioja, P. Kalevi, P, J. Chem. Ecol. (1996) https://doi.org/10.1007/BF02040093
  22. 22.
    B. Ou, M. Hampsch-Woodill, R.L. Prior, J. Agric. Food Chem. (2001).  https://doi.org/10.1021/jf010586o Google Scholar
  23. 23.
    A. Badhani, S. Rawat, I.D. Bhatt, R.S. Rawal, J. Food Biochem. (2015).  https://doi.org/10.1111/jfbc.12172 Google Scholar
  24. 24.
    G.A. Garzon, K.M. Riedi, S.J. Schwartz, J. Food Sci. (2009).  https://doi.org/10.1111/j.1750-3841.2009.01092.x Google Scholar
  25. 25.
    E. Klewicka, M. Sójka, R. Klewicki, K. Kołodziejczyk, L. Lipińska, A. Nowak, Molecules (2016).  https://doi.org/10.3390/molecules21070908 Google Scholar
  26. 26.
    R.A. Moyer, K.E. Hummer, C.E. Finn, B. Frei, R.E. Wrolstad, J. Agric. Food Chem. (2002).  https://doi.org/10.1021/jf011062r Google Scholar
  27. 27.
    M.N.S. Guedes, R. Pio, L.A.C. Maro, F.F. Lage, C.M.P. de Abreu, A.A. Saczk, Acta Scientia. (2017).  https://doi.org/10.4025/actasciagron.v39i1.28413 Google Scholar
  28. 28.
    M. Kähkönen, P. Kylli, V. Ollialainen, J.-P. Salminen, M. Heinonen, J. Agric. Food Chem. (2012).  https://doi.org/10.1021/jf203431g Google Scholar
  29. 29.
    M. Kula, M. Majdan, D. Głod, M. Krauze-Baranowska, J. Food Comp. Anal. (2016).  https://doi.org/10.1016/j.jfca.2016.08.003 Google Scholar
  30. 30.
    Ó. Acosta-Montoya, F. Vaillant, S. Cozzano, C. Mertz, A.M. Pérez, M.V. Castro, Food Chem. (2010).  https://doi.org/10.1016/j.foodchem.2009.09.032 Google Scholar
  31. 31.
    A. Srivastava, P. Greenspan, D.K. Hartle, J.L. Hargrove, R. Amarowicz, R.B. Pegg, J. Agric. Food Chem. (2010).  https://doi.org/10.1021/jf1004836 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Oscar Abel Sánchez-Velázquez
    • 1
  • Julio Montes-Ávila
    • 1
  • Jorge Milán-Carrillo
    • 1
    • 2
  • Cuauhtémoc Reyes-Moreno
    • 1
    • 2
  • Saraid Mora-Rochin
    • 1
  • Edith-Oliva Cuevas-Rodríguez
    • 1
    • 2
    Email author
  1. 1.Programa Regional de Posgrado en BiotecnologíaUniversidad Autónoma de SinaloaCuliacán RosalesMexico
  2. 2.Posgrado en Ciencia Y Tecnología de Alimentos, Facultad de Ciencias Químico-BiológicasUniversidad Autónoma de SinaloaCuliacán RosalesMexico

Personalised recommendations