Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2241–2252 | Cite as

Optimization of ultrasound-assisted extraction of antioxidant phenolics from Capparis spinosa flower buds and LC–MS analysis

  • Hafid Boudries
  • Nacim NabetEmail author
  • Nadia Chougui
  • Samiha Souagui
  • Sofia Loupassaki
  • Khodir Madani
  • Krasimir Dimitrov
Original Paper


The proposed mathematical model allowed to predict total polyphenols (TP) yields and antioxidant activity (AA) of the extracts in a wide range of experimental conditions: time (t) (0–240 min), ultrasound power (US) (0–100 W), ethanol concentration (S) (0–50% ethanol in water) and temperature (T) (20–60 °C). Optimization for TP predicted that the best results was obtained at T = 60 °C, S = 50% ethanol, US = 100 W and t = 240 min which was 39.96 mg GAE/g dm. Simulations were made also for the antioxidant activity; optimization predicted that highest antioxidant activity should be obtained at T =  + 1, S =  + 1, US =  + 0.1 at 240 min, corresponding to 116.1 µmol TE/g dm. Both experimental and model results showed that presence of ethanol in the solvent enhanced incredibly the extraction productivity. Temperature effect was positive, but less pronounced. In addition, the phenolic profile of Capparis spinosa (caper) extracts was investigated by liquid chromatograph coupled to mass spectrometer (LC-DAD-ESI–MS). The quercetin-3-rutinoside was the major flavonoid in C. Spinosa flower buds extract, followed by quercetine rhamnoside and kaempferol rhamnoside.


Antioxidant activity Capparis spinosa Extraction kinetics LC-DAD-ESI–MS Mathematical model Ultrasound-assisted extraction 



This investigation was financed by the Ministry of High Education and Scientific Research of Algeria.

Author contributions

H. Boudries handled all experiments. N. Nabet collected data and drafted manuscript. K. Dimitrov and K. Madani supervised the study and interpreted the results. N. Chougui corrected the English form. S. Souagui done the statistical analysis and S. Loupassaki done the characterization by LC–MS analysis.

Supplementary material

11694_2019_144_MOESM1_ESM.docx (189 kb)
Supplementary file1 (DOCX 188 kb)


  1. 1.
    A. Yanagida, T. Kanda, M. Tanabe, F. Matsudaira, J.G. Oliveira Cordeiro, J. Agric. Food Chem. 48, 5666–5671(2000)CrossRefGoogle Scholar
  2. 2.
    X.L. Bai, T.L. Yue, Y.H. Yuan, H.W. Zhang, J. Sep. Sci. 33, 3751–3758 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Halliwell, Annu. Rev. Nutr. 16, 33–50 (1996)CrossRefGoogle Scholar
  4. 4.
    S. Fici, Plant Syst. Evol. 228, 123–141 (2001)CrossRefGoogle Scholar
  5. 5.
    C. Inocencio, R.S. Cowan, F. Alcaraz, D. Rivera, M.F. Fay, Genet. Resour. Crop Evol. 52, 137–144 (2005)CrossRefGoogle Scholar
  6. 6.
    C. Inocencio, D. Rivera, M.C. Obón, F. Alcaraz, J.A. Barrena, Ann. Mo. Bot. Gard. 93(1), 122–149 (2006)CrossRefGoogle Scholar
  7. 7.
    H.E. Jiang, X. Li, D.K. Ferguson, Y.F. Wang, C.J. Liu, C.S. Li, J. Ethnopharmacol. 113, 409–420 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Tlili, W. Elfalleh, E. Saadaoui, A. Khaldi, S. Triki, N. Nasri, Fitoterapia 82, 93–101 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Galván D’Alessandro, K. Dimitrov, P. Vauchel, I. Nikov, Chem. Eng. Res. Des. 92, 1818–1826 (2014)CrossRefGoogle Scholar
  10. 10.
    X.P. Fu, H.A. Aisa, M. Abdurahim, A. Yili, S.F. Aripova, B. Tashkhodzhaev, Chem. Nat. Compd. 43, 181–183 (2007)CrossRefGoogle Scholar
  11. 11.
    C. Inocencio, D. Rivera, F. Alcaraz, F.A. Tomás-Barberán, Eur. Food Res. Technol. 212, 70–74 (2000)CrossRefGoogle Scholar
  12. 12.
    B. Matthäus, M. Özcan, J. Agric. Food Chem. 50, 7323–7325 (2002)CrossRefGoogle Scholar
  13. 13.
    A. Yili, W. Tao, B.T. Sagdullaev, H.A. Aisa, N.T. Ulchenko, A.I. Glushenkova, R.K. Rakhmanberdyeva, Chem. Nat. Compd. 42, 100–110 (2006)CrossRefGoogle Scholar
  14. 14.
    K.M. Ara, M. Karami, F. Raofie, J. Supercrit. Fluids. 85, 173–182 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Galvan D’Alessandro, K. Kriaa, I. Nikov, K. Dimitrov, Sep. Purif. Technol. 93, 42–47 (2012)CrossRefGoogle Scholar
  16. 16.
    M.B. Hossain, N.P. Brunton, A. Patras, B. Tiwari, C.P. O'Donnell, A.B. Martin-Diana, C. Barry-Ryan, Ultrason. Sonochem. 19, 582–590 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Hadrich, K. Dimitrov, K. Kriaa, J. Food Process. Preserv. 41(2), e12769 (2016)CrossRefGoogle Scholar
  18. 18.
    V. Sant’Anna, A. Brandelli, L.D.F. Marczak, I.C. Tessaro, Sep. Purif. Technol. 100, 82–87 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Peleg, J. Sep. Sci. 53, 1216–1219 (1988)Google Scholar
  20. 20.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  21. 21.
    W. Brand-williams, M.E. Cuvelier, C. Bercet, LWT-Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  22. 22.
    M. Argentieri, F. Macchia, P. Papadia, F.P. Fanizzi, P. Avato, Ind. Crops Prod. 36, 65–69 (2012)CrossRefGoogle Scholar
  23. 23.
    N. Tlili, A. Khaldi, S. Triki, S. Munné-Bosch, Plant Foods Hum. Nutr. 65, 260–265 (2010)CrossRefGoogle Scholar
  24. 24.
    T. Yue, D. Shao, Y. Yuan, Z. Wang, C. Qiang, J. Sep. Sci. 35, 2138–2145 (2012)CrossRefGoogle Scholar
  25. 25.
    M.A.T. Escribano-Bailn, C. Santos-Buelga, in Methods in Polyphenol Analysis, ed. by C. Santos-Buelga, G. Williamson (The Royal Society of Chemistry, Cambridge, 2003)Google Scholar
  26. 26.
    F. Adjé, Y.F. Lozano, P. Lozano, A. Adima, F. Chemat, E.M. Gaydou, Ind. Crops Prod. 32, 439–444 (2010)CrossRefGoogle Scholar
  27. 27.
    C.A. Rice-Evans, N.J. Miller, G. Paganga, Free Radical Biol. Med. 20, 933–956 (1996)CrossRefGoogle Scholar
  28. 28.
    B.L. Freeman, D.L. Eggett, T.L. Parker, J. Food Sci. 75, 570–576 (2010)CrossRefGoogle Scholar
  29. 29.
    I. Tagnaout, H. Zerkani, M. Mahjoubi, M. Bourakhouadar, F. Alistiqsa, A. Bouzoubaa, T. Zair, IJPPR. 8, 1993–2006 (2016)Google Scholar
  30. 30.
    Y.Q. Ma, J.C. Chen, D.H. Liu, X.Q. Ye, J. Food Sci. 73, T115–120 (2008)CrossRefGoogle Scholar
  31. 31.
    S.I. Mussatto, L.F. Ballesteros, S. Martins, J.A. Teixeira, Sep. Purif. Technol. 83, 173–179 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.T. Tung, W.C. Chang, P.S. Chen, T.C. Chang, S.T. Chang, J. Sep. Sci. 34, 844–851 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Sharaf, M.A. El-Ansari, N.A.M. Saleh, Fitoterapia 71, 46–49 (2000)CrossRefGoogle Scholar
  34. 34.
    S. Wiese, S.G. Wubshet, J. Nielsen, D. Staerk, Food Chem. 141, 4010–4018 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaïaAlgérie
  2. 2.Laboratoire de Biotechnologie Végétale Et Ethnobotanique, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaïaAlgérie
  3. 3.Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaïaAlgérie
  4. 4.Department of Food Quality and Chemistry of Natural ProductsMediterranean Agronomic Institute of Chania/Centre International de Hautes Etudes Agronomiques MéditerranéennesChaniaGreece
  5. 5.Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7394 - ICV - Institut Charles ViolletteLilleFrance

Personalised recommendations