Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2218–2229 | Cite as

Combined effect of vacuum and different freezing methods on the quality parameters of cherry tomato (Lycopersicon esculentum var. Cerasiforme)

  • Seda Ersus BilekEmail author
  • Atiye Değirmenci
  • İdil Tekin
  • Fatih Mehmet Yılmaz
Original Paper


Freezing has been a convenient technique to maintain the shelf stable properties of tomato fruits and to permit the transportation of the products to remote markets. This study evaluated the effects of four different freezing methods on the quality of cherry tomatoes (Lycopersicon esculentum var. Cerasiforme). Fresh, whole cherry tomatoes were frozen using multistage freezing (I), vacuum pre-treatment + individual quick frozen (IQF) (II), vacuum pre-treatment + static freezing (III), and vacuum pre-treatment + multistage freezing (IV) methods, and afterward stored in polyethylene terephthalate/polyethylene terephthalate/polyethylene (PET/PET/PE) bags at -20 °C and analyzed during 5 months of storage. The percentage of skin cracking, ion leakage, pectolytic enzyme activities, colour values, and lycopene content as well as the total dry matter content and pH values of the cherry tomatoes were significantly affected by both the freezing techniques and storage period. The highest skin cracking and ion leakage and also the highest lycopene retention were found in the vacuum pre-treatment + IQF treated samples. The vacuum pre-treatment + multistage freezing resulted in the lowest skin cracking especially in the early stages of storage. The ion leakage values displayed negative correlations with colour values and lycopene contents. However, the enzyme activities exhibited significant positive correlations with both the colour values and lycopene contents. The lack of correlation between the skin cracking and enzyme activities suggest that the cracking problem is not mainly caused by pectolytic enzyme activities.


Cherry tomato Vacuum Freezing techniques Skin cracking Enzyme activity Frozen storage 



Fresh weight bias


Multistage freezing


Vacuum pre-treatment before individual quick frozen

V + SF

Vacuum pre-treatment before static freezing

V + MF

Vacuum pre-treatment before multistage freezing


Polyethylene terephthalate/Polyethylene terephthalate/Polyethylene


Pectin methylesterase




Residual activity of pectin methylesterase


Residual activity of polygalacturonase



The authors would like to give special thanks to the Enerji Tarım Co. (İzmir, Turkey) for their kind and outstanding technical support.


  1. 1.
    L. Müller, C. Caris-Veyrat, G. Lowe, V. Böhm, Crit. Rev. Food Sci. Nutr. 56, 1868–1879 (2016)CrossRefGoogle Scholar
  2. 2.
    C.M. Stinco, F.J. Heredia, I.M. Vicario, A.J. Meléndez-Martínez, LWT-Food. Sci. Technol. 65, 718–724 (2016)Google Scholar
  3. 3.
    R. Martí, M. Leiva-Brondo, I. Lahoz, C. Campillo, J. Cebolla-Cornejo, S. Roselló, Food Chem. 239, 148–156 (2018)CrossRefGoogle Scholar
  4. 4.
    Food, and Agricultural Organization of the United Nations - FAO, Faostat. Accessed (2018)
  5. 5.
    I. Odriozola-Serrano, R. Soliva-Fortuny, O. Martín-Belloso, Innov. Food Sci. Emerg. Technol. 9, 272–279 (2008)CrossRefGoogle Scholar
  6. 6.
    Y. Ding, J. Sheng, S. Li, Y. Nie, J. Zhao, Z. Zhu, Postharvest Biol. Technol. 101, 88–95 (2015)CrossRefGoogle Scholar
  7. 7.
    International Trade Centre - ITC. Accessed (2018)
  8. 8.
    G. Bonat Celli, A. Ghanem, M. Su-Ling Brooks, Food Rev. Int. 32, 280–304 (2016)CrossRefGoogle Scholar
  9. 9.
    N.K. Kim, Y.C. Hung, J Food Sci. 59, 669–674 (1994)CrossRefGoogle Scholar
  10. 10.
    O. Fennema, in Water Relations in Foods, ed. By B.B. Duckworth (Academic Press, New York, 1975) p. 397–413Google Scholar
  11. 11.
    R.M. Reeve, M.S. Brown, J Food Sci. 33, 321–326 (1968)CrossRefGoogle Scholar
  12. 12.
    A. Sebok, I. Csepregi, C. Baar, in Food Technology International Europe, ed. By A. Turner (Sterling Publications International, London, 1994) p. 66–68Google Scholar
  13. 13.
    C. James, S.J. James, in Encyclopedia of Food Sciences and Nutrition, ed. By B. Caballero, L. Trugo, P.M. Finglas (Academic Press, Amsterdam, 2003) p. 2725–2732Google Scholar
  14. 14.
    N.E. Zaritzky, in Managing Frozen Foods, ed. By C.J. Kennedy (Woodhead, London, 2000) p. 304Google Scholar
  15. 15.
    C.M. Shook, T.H. Shellhammer, S.J. Schwartz, J. Agric, Food Chem. 49, 664–668 (2001)CrossRefGoogle Scholar
  16. 16.
    Official Methods of Analysis of the Association of Official Analytical Chemists International, 17th edn. (Maryland, 2000) 925.09.Google Scholar
  17. 17.
    P. Joy, R. Lada, J Food Sci. 71, 392–397 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Ersus, D.M. Barrett, Innov. Food Sci. Emerg. Technol. 11, 598–603 (2010)CrossRefGoogle Scholar
  19. 19.
    G.E. Anthon, D.M. Barrett, J. Agric, Food Chem. 54, 204–211 (2006)CrossRefGoogle Scholar
  20. 20.
    G.E. Anthon, D.M. Barrett, Food Chem. 110, 239–247 (2008)CrossRefGoogle Scholar
  21. 21.
    J.R. Pieper, D.M. Barrett, J. Sci, Food Agric. 89, 177–194 (2009)CrossRefGoogle Scholar
  22. 22.
    B.S. Cemeroğlu, Fruit and Vegetable Processing Technology II (Nobel Academic Publishing, Ankara, 2013), pp. 121–151Google Scholar
  23. 23.
    Z. Lisiewska, W. Kmiecik, Food Chem. 70, 167–173 (2000)CrossRefGoogle Scholar
  24. 24.
    P.A. Wojtas, H.D. Goff, S.C. Carbyn, J. Scanning Microsc. 21, 334–347 (1999)CrossRefGoogle Scholar
  25. 25.
    K.L. Parkin in Enzymes in Food Processing, ed. By T. Nagodawithana, G. Reed (Academic Press, San Diego, 2013) p. 39–67Google Scholar
  26. 26.
    S. Barringer, in Handbook of Vegetable Preservation and Processing, ed. By Y.H. Hui, S. Ghazala, D.M. Graham, K.D. Murrell, W-K. Nip (Marcel Dekker, Inc., New York, 2003) p. 293–308Google Scholar
  27. 27.
    B.R.W. Pinset, J. Food Sci. 27, 120–120 (1962)CrossRefGoogle Scholar
  28. 28.
    G.E. Anthon, D.M. Barrett, J Food Eng. 97, 367–372 (2010)CrossRefGoogle Scholar
  29. 29.
    Q. Zhou, Retrieved from (2016)
  30. 30.
    M. Fuchigami, N. Hyakumoto, K. Miyazaki, J Food Sci. 60, 137–141 (1995)CrossRefGoogle Scholar
  31. 31.
    S. Van Buggenhout, M. Lille, I. Messagie, A. Van Loey, K. Autio, M. Hendrickx, Eur. Food Res. Technol. 222, 543–553 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Pinheiro, C. Alegria, M. Abreu, E.M. Gonçalves, C.L. Silva, J Food Eng. 114, 338–345 (2013)CrossRefGoogle Scholar
  33. 33.
    I. Mulyawanti, K.T. Dewandari, Indones. J Agric. 3, 32–38 (2010)Google Scholar
  34. 34.
    A.F. Lopez Camelo, P.A. Gomez, Hort. Bras. 22, 534–537 (2004)CrossRefGoogle Scholar
  35. 35.
    G. Urbanyi, K. Horti, Acta Aliment. 18, 247–267 (1989)Google Scholar
  36. 36.
    M.S. Lenucci, M. De Caroli, P.P. Marrese, A. Iurlaro, L. Rescio, V. Böhm, G. Dalessandroa, G. Piroa, Food Chem. 170, 193–202 (2015)CrossRefGoogle Scholar
  37. 37.
    S.M. Choudhari, L. Ananthanarayan, Food Chem. 102, 77–81 (2007)CrossRefGoogle Scholar
  38. 38.
    T. Prokopov, M. Nikolova, G. Dobrev, D. Taneva, Acta Aliment. 46, 84–91 (2017)CrossRefGoogle Scholar
  39. 39.
    I. Çinar, LWT-Food Sci. Technol. 37, 363–367 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Seda Ersus Bilek
    • 1
    Email author
  • Atiye Değirmenci
    • 2
  • İdil Tekin
    • 1
  • Fatih Mehmet Yılmaz
    • 3
  1. 1.Food Engineering Department, Engineering FacultyEge UniversityİzmirTurkey
  2. 2.Food Processing Department, Maçka Vocational SchoolKaradeniz Technical UniversityTrabzonTurkey
  3. 3.Food Engineering Department, Engineering FacultyAydın Adnan Menderes UniversityEfelerTurkey

Personalised recommendations