Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2167–2176 | Cite as

Chemometric characterization of twenty three culinary herbs and spices according to antioxidant activity

  • Jelena S. NikolicEmail author
  • Violeta D. Mitic
  • Vesna P. Stankov Jovanovic
  • Marija V. Dimitrijevic
  • Gordana S. Stojanovic
Original Paper
  • 24 Downloads

Abstract

Antioxidants rich food protects human body against free radicals and reduces the risk of many health problems. Herbs and spices are known to contain a wide variety of antioxidants. Antioxidant activity, using DPPH, ABTS, FRAP, TRP and CUPRAC assays, and total phenolic content of 23 culinary herbs and spices traditionally used in Serbian diet was evaluated. Thyme (Thymus vulgaris), showed highest antioxidant activity according to all methods used in this study. Highest total phenolic content was recorded in oregano (Origanum vulgare) (13.61 mg GAE g−1 FW). In order to evaluate relationships through various herbs and spices hierarchical cluster analysis and principal component analysis were employed. Three statistical significant clusters were identified, grouping herbs and spices based on their antioxidant activity and total phenolic content. The similar grouping was observed with principal component analysis.

Keywords

Herbs Spices Antioxidant Phenolic Cluster analysis Principal component analysis 

Notes

Acknowledgements

The research was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia Grants Number 172047 and 172051 and the Serbian Academy of Sciences and Art (SASA), Branch of SASA in Nis (Project No. 0-13-18).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    H. Sies, Redox Biol. 4, 180 (2015)CrossRefGoogle Scholar
  2. 2.
    E. Niki, N. Noguchi, in Oxygen/nitrogen radicals: cell injury and disease, ed. by V. Vallyathan, V. Castranova, X. Shi (Springer, New York, 2012), p. 19Google Scholar
  3. 3.
    J. Pokorny, Eur. J. Lipid Sci. Technol. 109, 629 (2007)CrossRefGoogle Scholar
  4. 4.
    H.P. Grice, Food Chem. Toxicol. 26, 717 (1988)CrossRefGoogle Scholar
  5. 5.
    B. Halliwell, in Handbook of antioxidants, ed. by E. Cadens, L. Packer (Marcel Dekker, New York, 2002), p. 1Google Scholar
  6. 6.
    K.V. Peter, Handbook of herbs and spices, 2nd edn. (Woodhead Publishing Limited, Cambridge, 2004)CrossRefGoogle Scholar
  7. 7.
    V.A. Parthasarathy, B. Chempakam, T.J. Zachariah, Chemistry of spices, 1st edn. (CABI, Oxfordshire, 2008)CrossRefGoogle Scholar
  8. 8.
    D.J. Charles, Antioxidant properties of spices, herbs and other sources, 1st edn. (Springer, New York, 2013)CrossRefGoogle Scholar
  9. 9.
    E. Opara, M. Chohan, Int. J. Mol. Sci. 15, 19183 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Goodacre, Vib. Spectrosc. 32, 33 (2003)CrossRefGoogle Scholar
  11. 11.
    X. Lu, M. Webb, M. Talbott, J. Van Eenennaam, A. Palumbo, J. Linares-Casenave, S. Doroshov, P. Struffenegger, B. Rasco, J. Agric. Food Chem. 58, 4056 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Dimitrijević, V. Stankov Jovanović, J. Cvetković, M. Mitić, G. Petrović, A. Đorđević, V. Mitić, Anal. Lett. 50, 1691 (2017)CrossRefGoogle Scholar
  13. 13.
    V. Mitic, V. Stankov Jovanovic, M. Dimitrijevic, J. Cvetkovic, S. Simonovic, S.N. Mandic, Fruits 69, 413 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Rad. Biol. Med. 26, 1231 (1999)CrossRefGoogle Scholar
  15. 15.
    M. Oyaizu, Jpn. J. Nutr. 44, 307 (1986)CrossRefGoogle Scholar
  16. 16.
    I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70 (1996)CrossRefGoogle Scholar
  17. 17.
    R. Apak, K. Güçlü, M. Özyürek, B.B. Oğlu, M. Bener, Methods Mol. Biol. 477, 163 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Yao, W. Sang, M. Zhou, G. Ren, J. Food Sci. 75, 9 (2010)CrossRefGoogle Scholar
  19. 19.
    U.S. Department of Agriculture, Agricultural Research Service (USDA). USDA National Nutrient Database for Standard Reference, Release 23. Nutrient Data Laboratory Home Page (2010)Google Scholar
  20. 20.
    L.-Z. Lin, S. Mukhopadhyay, R.J. Robbins, J.M. Harnly, J. Food Compos. Anal. 20, 361 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Gonçalves, E. Moreira, C. Grosso, P.B. Andrade, P. Valentão, A. Romano, J. Food Sci. Technol. 54, 219 (2017)CrossRefGoogle Scholar
  22. 22.
    M.E. Embuscado, J. Funct. Foods 18, 811 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Shan, Y.Z. Cai, M. Sun, H. Corke, J. Agric. Food Chem. 53, 7749 (2005)CrossRefGoogle Scholar
  24. 24.
    H. Wang, G.J. Provan, K. Helliwell, Food Chem. 87, 307 (2003)CrossRefGoogle Scholar
  25. 25.
    J.B. Mohankumar, L. Uthira, S.U. Maheswari, J. Nutr. Hum. 2, 1 (2018)Google Scholar
  26. 26.
    A.C. Pedro, F. Moreira, D. Granato, N.D. Rosso, Anais Acad. Brasileira Ciênc. 88, 1055 (2016)CrossRefGoogle Scholar
  27. 27.
    W. Zheng, S.Y. Wang, J. Agric. Food Chem. 49, 5165 (2001)CrossRefGoogle Scholar
  28. 28.
    R.L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53, 4290 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Özyürek, K. Güçlü, R. Apak, TrAC. Trends Anal. Chem. 30, 652 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Benabdallah, C. Rahmoune, M. Boumendjel, O. Aissi, C. Messaoud, Asian Pac. J. Trop. Biomed. 6, 760 (2016)CrossRefGoogle Scholar
  31. 31.
    K.B. Bączek, O. Kosakowska, J.L. Przybył, E. Pióro-Jabrucka, R. Costa, L. Mondello, M. Gniewosz, A. Synowiec, Z. Węglarz, Ind. Crops Prod. 102, 154 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Kiselova, D. Ivanova, T. Chervenkov, D. Gerova, B. Galunska, T. Yankova, Phytother. Res. 20, 961 (2006)CrossRefGoogle Scholar
  33. 33.
    F. Zaidi, B. Voirin, M. Jay, M.R. Viricel, Phytochemistry 48, 991 (1998)CrossRefGoogle Scholar
  34. 34.
    R. Amarowicz, Z. Żegarska, R. Rafałowski, R.B. Pegg, M. Karamać, A. Kosińska, Eur. J. Lipid Sci. Technol. 111, 1111 (2009)CrossRefGoogle Scholar
  35. 35.
    E.W.C. Chan, L.Q. Kong, K.Y. Yee, W.Y. Chua, T.Y. Loo, Free Rad. Antiox. 2, 20 (2012)CrossRefGoogle Scholar
  36. 36.
    N. Bernaerta, D. De Paepeb, C. Bouten, H. De Clercq, D. Stewart, E. Van Bockstaelea, M. De Loose, B. Van Droogenbroeck, Food Chem. 134, 669 (2012)CrossRefGoogle Scholar
  37. 37.
    Z. Derakhshani, A. Hassani, A. Pirzad, R. Abdollahi, M. Dalkani, Bot. Serbica 36, 117 (2012)Google Scholar
  38. 38.
    G. Janicsak, I. Mathe, V. Miklossy-Vari, G. Blunden, Biochem. Syst. Ecol. 27, 733 (1999)CrossRefGoogle Scholar
  39. 39.
    F.M. Areias, P. Valentao, P.B. Andrade, F. Ferreres, R.M. Seabra, Food Chem. 73, 307 (2001)CrossRefGoogle Scholar
  40. 40.
    H.J.D. Dorman, M. Kosar, K. Kahlos, Y. Holm, R. Hiltunen, J. Agric. Food Chem. 51, 4563 (2003)CrossRefGoogle Scholar
  41. 41.
    I. Spiridon, S. Colceru, N. Anghel, C.A. Teaca, R. Bodirlau, A. Armatu, Nat. Prod. Res. 25, 1657 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Dudonné, X. Vitrac, P. Coutiere, M. Woillez, J.M. Merillon, J. Agric, Food Chem. 57, 1768 (2009)CrossRefGoogle Scholar
  43. 43.
    W.C. Hou, R.D. Lin, K.T. Cheng, Y.T. Hung, C.H. Cho, C.H. Chen, S.Y. Hwang, M. Lee, Phytomed. 10, 170 (2003)CrossRefGoogle Scholar
  44. 44.
    H.J.D. Dorman, A. Peltoketo, R. Hiltunen, M.J. Tikkanen, Food Chem. 83, 255 (2003)CrossRefGoogle Scholar
  45. 45.
    A.J. Richard, W.W. Dean, Applied multivariate statistical analysis (Prentice-Hall, London, 2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jelena S. Nikolic
    • 1
    Email author
  • Violeta D. Mitic
    • 1
  • Vesna P. Stankov Jovanovic
    • 1
  • Marija V. Dimitrijevic
    • 1
  • Gordana S. Stojanovic
    • 1
  1. 1.Department of Chemistry, Faculty of Sciences and MathematicsUniversity of NisNisSerbia

Personalised recommendations