Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2147–2156 | Cite as

Effect of isolation methods on the crystalline, pasting, thermal properties and antioxidant activity of starch from queen sago (Cycas circinalis) seed

  • Beevi Noora
  • Cherakkathodi Sudheesh
  • Narayanasamy Sangeetha
  • Kappat Valiyapeediyekkal SunoojEmail author
Original Paper


Crystalline, pasting and thermal properties and antioxidant activity of starch isolated from queen sago seed by using different isolation methods such as water steeping, alkali steeping and enzymatic extraction methods were evaluated. The properties studied include, chemical composition, morphology, swelling, solubility, color, X-ray diffraction (XRD), texture, pasting (RVA), total phenolic content, antioxidant activity and thermal (DSC) properties. Among the isolation methods, enzymatic extraction method is efficient as compared to alkali and water steeping method. Enzymatically extracted sago starch (ES) showed highest yield, L* value, swelling, solubility and lower non starch components. ES formed harder gel as compared to alkali steeped sago starch (AS) and water steeped sago starch (WS). SEM showed presence of more agglomerated granular structure in AS. ES showed highest peak, trough and break down viscosity. Setback and final viscosity was highest for AS. Isolation methods affected on the total phenolic content and antioxidant activity of queen sago seed starch. Highest gelatinization enthalpy of AS was correlated with higher relative crystallinity and presence of more agglomerated structure. The queen sago seed starch isolated by enzymatic extraction method has better properties and industrial relevance.


Queen sago seed starch Starch isolation methods Pasting properties Texture Gelatinization properties 



The authors are thankful to the Department of Food Science and Technology and Central Instrumentation Facility, Pondicherry University (Grant No. F1-17.1/2016-17/MANF-2015-17-KER-52862) for providing laboratory and instrumental facilities.


  1. 1.
    R.M.I.S.K. Senavirathna, S. Ekanayake, E.R. Jansz, Starch/Staerke 68, 999 (2016)CrossRefGoogle Scholar
  2. 2.
    S.C. Alcázar-alay, M. Angela, A. Meireles, Food Sci. Technol. Int. 35, 215 (2015)CrossRefGoogle Scholar
  3. 3.
    E. Agama-Acevedo, S.L. Rodriguez-Ambriz, F.J. García-Suárez, F. Gutierrez-Méraz, G. Pacheco-Vargas, L.A. Bello-Pérez, Starch/Staerke 66, 337 (2014)CrossRefGoogle Scholar
  4. 4.
    B.C. Maniglia, D.R. Tapia-Blácido, Food Hydrocoll. 55, 47 (2016)CrossRefGoogle Scholar
  5. 5.
    P.R. Correia, M.C. Nunes, M.L. Beirão-da-Costa, Food Hydrocoll. 30, 448 (2013)CrossRefGoogle Scholar
  6. 6.
    Q. Sun, L. Chu, L. Xiong, F. Si, J. Food Sci. Technol. 52, 327 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Blazek, L. Copeland, Carbohydr. Polym. 71, 380 (2008)CrossRefGoogle Scholar
  8. 8.
    AOAC, Association of Official Analytical Chemists, 15th edn. (AOAC, Washington DC, 1990)Google Scholar
  9. 9.
    I.H. Williams, F.D. Kuzina, Cereal Chem. 47, 411 (1970)Google Scholar
  10. 10.
    C. Sudheesh, K.V. Sunooj, J. George, Int. J. Biol. Macromol. 125, 1084 (2019)CrossRefGoogle Scholar
  11. 11.
    C. Sudheesh, K.V. Sunooj, J. George, J. Food Meas. Charact. (2019). Google Scholar
  12. 12.
    L.A. Bello-Pérez, P.C. Flores-Silva, G.A. Camelo-Méndez, O. Paredes-López, J.D. De Figueroa-Cárdenas, Cereal Chem. 92, 265 (2015)CrossRefGoogle Scholar
  13. 13.
    J.T. Martins, M.A. Cerqueira, A.A. Vicente, Food Hydrocoll. 27, 220 (2012)CrossRefGoogle Scholar
  14. 14.
    M.Z. Nor Nadiha, A. Fazilah, R. Bhat, A.A. Karim, Food Chem. 121, 1053 (2010)CrossRefGoogle Scholar
  15. 15.
    P.R. Correia, M.L. Beirão-Da-Costa, Food Bioprod. Process. 90, 309 (2012)CrossRefGoogle Scholar
  16. 16.
    N.M. Vicentini, N. Dupuy, M. Leitzelman, M.P. Cereda, P.J.A. Sobral, Spectrosc. Lett. 38, 749 (2005)CrossRefGoogle Scholar
  17. 17.
    F. Zhang, Y. Zhang, K. Thakur, J. Zhang, Z. Wei, Food Chem. 275, 8 (2019)CrossRefGoogle Scholar
  18. 18.
    F. Zeng, F. Ma, F. Kong, Q. Gao, S. Yu, Food Chem. 172, 92 (2015)CrossRefGoogle Scholar
  19. 19.
    I.A. Wani, M. Jabeen, H. Geelani, F.A. Masoodi, I. Saba, S. Muzaffar, Food Hydrocoll. 35, 253 (2014)CrossRefGoogle Scholar
  20. 20.
    K.O. Adebowale, B.I. Olu-Owolabi, E.K. Olawumi, O.S. Lawal, Ind. Crops Prod. 21, 343 (2005)CrossRefGoogle Scholar
  21. 21.
    K. Kaur, N. Singh, Food Chem. 71, 511 (2000)CrossRefGoogle Scholar
  22. 22.
    E. Pérez-Pacheco, V.M. Moo-Huchin, R.J. Estrada-León, A. Ortiz-Fernández, L.H. May-Hernández, C.R. Ríos-Soberanis, D. Betancur-Ancona, Carbohydr. Polym. 101, 920 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyPondicherry UniversityPuducherryIndia

Personalised recommendations