Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2136–2146 | Cite as

Effects of fermentation time on rheological and physicochemical characteristics of koreeb (Dactyloctenium aegyptium) seed flour dough and kisra bread

  • Mohamed Ismael AhmedEmail author
  • Xueming XuaEmail author
  • Abdellatief A. Sulieman
  • Amer Ali Mahdi
  • Yang Na
Original Paper


The effects of different fermentation time (0–72 h) on rheological and thermal properties of the dough and physicochemical characteristics of kisra bread prepared from the koreeb seed flour were evaluated. The pH of the fermented kisra dough decreased, whereas titratable acidity increased. In addition, fermentation time exhibited a significant decrease in rheological moduli (G′ and G″) and an increase in rheological tangent (δ). Gelatinization temperature and degree of starch gelatinization increased, while enthalpy decreased. An increase of protein content and in vitro protein digestibility (IVPD) was observed in kisra breads. Fermented kisra breads exhibited the highest acceptability scores in sensory evaluation, especially the sample fermented for 36 h compared to the control. The X-ray diffractograms of stored kisra breads showed the B-type structure with the presence of peaks at 13.5°, 17.5°, and 26.5° 2θ. In addition, all samples exhibited a peak centered at 20° 2θ, which reflects V-type crystal structure of amylose–lipid complex. Overall, the fermentation process enhanced the nutritional, sensorial and health attributes of kisra breads.


Dactyloctenium aegyptium Koreeb Kisra bread Proximate composition Rheology Sensory evaluation 



The authors wish to thank the Academic Program Development of Jiangsu Province, Higher Education Institutes, Wuxi, Jiangsu Province, China. We also extend our sincere gratitude to the staff and students of Food Components and Properties Research Center.


Funding was provided by Ministry of Education of the People’s Republic of China (Grant No. 214122).

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    J. Jebastella, A. Reginald, Int. J. Recent. Sci. Res. 6(7), 5046–5048 (2015)Google Scholar
  2. 2.
    K.H. Janbaz, F. Saqib, Bangladesh J. Pharmacol. 10(2), 295–302 (2015)Google Scholar
  3. 3.
    A.M. Emad, E.-G.E. Gamal, Glob. J. Res. Med. Plants Indig. Med. 2(4), 189 (2013)Google Scholar
  4. 4.
    O.M. Salih, A.M. Nour, D.B. Harper, J. Sci. Food Agric. 58(3), 417–424 (1992)Google Scholar
  5. 5.
    M. Qasim, Z. Abideen, M. Adnan, S. Gulzar, B. Gul, M. Rasheed, M. Khan, S. Afr, J. Bot. 110, 240–250 (2017)Google Scholar
  6. 6.
    S. Sachdeva, R. Kals, Cytologic, morphologic and chemotaxonomic studies in Dactyloctenium aegyptium (L.) Beauv. complex. Proc. Plant Sci. 90(3), 217–225 (1981)Google Scholar
  7. 7.
    H.A. Dirar, The indigenous fermented foods of the Sudan: a study in African food and nutrition (CAB international, Cambridge University Press, Cambridge, UK, 1993), pp. 159–163Google Scholar
  8. 8.
    A.K. Anal, MDPI Ferment. 5(1), 8 (2019)Google Scholar
  9. 9.
    A. Ojokoh, B. Bello, J. Life Sci. 8(8), 668–675 (2014)Google Scholar
  10. 10.
    O. Achi, E. Okereka, J. Manag. Technol. 1, 7–13 (1999)Google Scholar
  11. 11.
    I.A. Hassan, A.H. El Tinay, Food Chem. 53(2), 149–151 (1995)Google Scholar
  12. 12.
    J.R. Taylor, J. Dewar, J. Taylor, R.F. von Ascheraden, J. Sci. Food Agric. 73(4), 464-470 (1997)Google Scholar
  13. 13.
    S.I. Mohammed, L.R. Steenson, A.W. Kirleis, Appl. Environ. Microbiol. 57(9), 2529–2533 (1991)Google Scholar
  14. 14.
    N.N. Mohsenin, Physical properties of plant and animal materials. Struct. Phys. Charact. Mech. Prop. 1, 73-86 (1970)Google Scholar
  15. 15.
    M.A. Osman, I.E.A. Rahman, S.H. Hamad, H.A. Dirar, J. Food Agric. Environ. 8, 102–106 (2010)Google Scholar
  16. 16.
    S.E. Mahgoub, B.M. Ahmed, M.M. Ahmed, A. El Nazeer, Food Chem. 67(2), 129–133 (1999)Google Scholar
  17. 17.
    A. Subastri, C. Ramamurthy, A. Suyavaran, R. Mareeswaran, P. Mandal, S. Rellegadla, C. Thirunavukkarasu, J. Food Sci. Technol. 52(9), 6024–6030 (2015)Google Scholar
  18. 18.
    A.A. Sulieman, K.-X. Zhu, W. Peng, M. Shoaib, M. Obadi, H.A. Hassanin, K. Alahmad, H.-M. Zhou, J. Food Meas. Charact. 12(3), 2032–2044 (2018)Google Scholar
  19. 19.
    S.M. Rosa, N. Rehman, M.I.G. de Miranda, S.M. Nachtigall, C.I. Bica, Carbohydr. Polym. 87, 1131–1138 (2012)Google Scholar
  20. 20.
    AOAC, Official methods of analysis of the association of official analytical chemists, 19th edn. (AOAC, Gaithersburg, 2012)Google Scholar
  21. 21.
    M.A.Y. Abdualrahman, H. Ma, A.E.A. Yagoub, C. Zhou, A.O. Ali, W. Yang, J. Saudi Soc. Agric. Sci.18(1), 32–40 (2016)Google Scholar
  22. 22.
    M. Elia, J. Sens. Stud. 26(4), 269–277 (2011)Google Scholar
  23. 23.
    S.K. Dutta, V.K. Nema, R. Bhardwaj, J. Agric. Eng. Res. 39, 259–268 (1988)Google Scholar
  24. 24.
    S. Wakil, M. Kazeem, Int. J. Food Sci. 19(4), 1679–1685 (2012)Google Scholar
  25. 25.
    S. Abasiekong, J. Appl. Bacteriol. 70(5), 391–393 (1991)Google Scholar
  26. 26.
    S. Paramithiotis, S. Gioulatos, E. Tsakalidou, G. Kalantzopoulos, Process Biochem. 41(12), 2429–2433 (2006)Google Scholar
  27. 27.
    A.E. Tinay, A.A. Gadir, M.E. Hidai, J. Sci. Food Agric. 30(9), 859–863 (1979)Google Scholar
  28. 28.
    M.A. Osman, J. Saudi Soc. Agric. Sci. 10(1), 1–6 (2011)Google Scholar
  29. 29.
    M.C. Assohoun, T.N. Djeni, M. Koussémon-Camara, K. Brou, J. Food Nutr. Sci. 4(11), 1120 (2013)Google Scholar
  30. 30.
    S.M. Mohsen, M.H. Aly, A.A. Attia, D.B. Osman, J. Appl. Environ. Microbiol. 4(2), 39–45 (2016)Google Scholar
  31. 31.
    A. Casado, A. Alvarez, L. González, D. Fernandez, J.L. Marcos, M.E. Tornadijo, Czech. J. Food Sci. 35(6), 496–506 (2017)Google Scholar
  32. 32.
    K. Poutanen, L. Flander, K. Katina, Food Microbiol. 26(7), 693–699 (2009)Google Scholar
  33. 33.
    I. Amadou, M.E. Gounga, Y.-H. Shi, G.-W. Le, Food Bioprod. Process. 92(1), 38–45 (2014)Google Scholar
  34. 34.
    M. Ilowefah, J. Bakar, H.M. Ghazali, A. Mediani, K. Muhammad, J. Food Sci. Technol. 52(9), 5534–5545 (2015)Google Scholar
  35. 35.
    S. Yang, M. Zheng, Y. Cao, Y. Dong, J. Liu, Braz. J. Microbiol. 49(3), 621–631 (2018)Google Scholar
  36. 36.
    V. Varatharajan, R. Hoover, J. Li, T. Vasanthan, K. Nantanga, K. Seetharaman, Q. Liu, E. Donner, S. Jaiswal, R. Chibbar, Food Res. Int. 44(9), 2594–2606 (2011)Google Scholar
  37. 37.
    S. Ijarotimi, O. Keshinro, J Food Sci Nutr. 63(3), 155–166 (2013)Google Scholar
  38. 38.
    N. Murekatete, Y. Hua, X. Kong, C. Zhang, Int. J. Food Eng. 8(1), 1–15 (2012)Google Scholar
  39. 39.
    A.O. El Khalifa, A.H. El Tinay, Food Chem. 49(3), 265–269 (1994)Google Scholar
  40. 40.
    A.M. Hamad, M.L. Fields, J. Food Sci. 44(2), 456–459 (1979)Google Scholar
  41. 41.
    J. Chavan, S. Kadam, L.R. Beuchat, Crit. Rev. Food Sci. Nutr. 28(5), 349–400 (1989)Google Scholar
  42. 42.
    M.A. Ali, A.H. El Tinay, A.H. Abdalla, Food Chem. 80(1), 51–54 (2003)Google Scholar
  43. 43.
    H.A. Dirar, Traditional fermentation technologies and food policy in Africa. Appropr. Technol. 19, 21–23 (1992)Google Scholar
  44. 44.
    N.E. Yousif, A.H. El Tinay, Food Chem. 70(2), 181–184 (2000)Google Scholar
  45. 45.
    P. Koletta, M. Irakli, M. Papageorgiou, A. Skendi, J. Cereal Sci. 60(3), 561–568 (2014)Google Scholar
  46. 46.
    A. Paterson, J.R. Piggott, Trends Food Sci. Technol. 17(10), 557–566 (2006)Google Scholar
  47. 47.
    R.S. Chavan, S.R. Chavan, Compr. Rev. Food Sci. Food Saf. 10(3), 169–182 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Food Technology DepartmentNyala Technological CollegeNyalaSudan
  3. 3.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations