Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2118–2129 | Cite as

Enzyme-assisted aqueous extraction of oil and protein hydrolysate from sesame seed

  • Behraad Tirgarian
  • Jamshid FarmaniEmail author
  • Jafar M. Milani
Original Paper


In this work, sesame oil and protein hydrolysates were extracted via the enzyme-assisted aqueous extraction (EAAE) process using Neutrase (a commercial protease), Pectinex (a commercial carbohydrate-hydrolyzing enzyme) and a 1:1 mix of Neutrase and Pectinex. All the extractions were performed at 50 °C and the optimum pH of the enzymes for 6 h, and the water to sesame ratio was raged between 1:1 and 6:1. The highest oil recoveries were obtained at 2:1 water to sesame ratio for each treatment and the Neutrase-Pectinex treatment gave the max recovery (89.7%, p < 0.05). The oil extracted using Neutrase-Pectinex treatment, contained the highest amount of unsaponifiables, total phenolic compounds, lignans and showed the highest oxidative stability, color indices and sensory attributes, even higher than the solvent-extracted oil (p < 0.05). However, oils obtained using different treatments were not significantly different in terms of free fatty acids content, iodine value, peroxide value, saponification value and anisidine value (p > 0.05). Protein hydrolysates obtained using Neutrase-Pectinex treatment (NPPH) had lower protein and higher carbohydrate content than that obtained using Neutrase treatment (NPH). The lowest solubility, emulsifying activity and stability indices, foam capacity and foam stability of NPPH and NPH was found to be at pH 4.0. The solubility of NPPH was higher than the NPH, but the emulsification properties of the NPH was better than NPPH at pH 2–10 (p < 0.05). NPPH and NPH were not significantly different in terms of foaming properties (p > 0.05).


Sesame oil Enzyme-assisted aqueous extraction Protein hydrolysates Pectinex Neutrase 



The authors are grateful to Keshavarz Company (Qom, Iran) for supplying the ground sesame seeds paste and Novozyme Company (Bagsvaerd, Denmark) for the enzymes.


  1. 1.
    S. Latif, F. Anwar, Food Chem. 125, 679 (2011)CrossRefGoogle Scholar
  2. 2.
    M.L. Martinez, M.G. Bordón, R.L. Lallana, P.D. Ribotta, D.M. Maestri, Food Bioprocess Technol. 10, 1113 (2017)CrossRefGoogle Scholar
  3. 3.
    J.J. Liu, M.A.A. Gasmalla, P. Li, R. Yang, Innov. Food Sci. Emerg. 35, 184 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Rosenthal, D.L. Pyle, K. Niranjan, Enzyme Microb. Technol. 19, 402 (1996)CrossRefGoogle Scholar
  5. 5.
    M. Chalamaiah, B.D. Kumar, R. Hemalatha, T. Jyothirmayi, Food Chem. 135, 3020 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    A.K. Sharma, B.K. Kumbhar, Food Bioprocess Technol. 66, 461 (2005)Google Scholar
  7. 7.
    L. Hou, S. Shang, S. Wang, J. Liu, Food Res. Technol. 236, 1027 (2013)CrossRefGoogle Scholar
  8. 8.
    S.A.O. Ribeiro, A.E. Nicacio, A.B. Zanqui, P.B.F. Biondo, B.A. de Abreu-Filho, J.V. Visentainer, S.T.M. Gomes, M. Matsushita, LWT-Food. Sci. Technol. 65, 464 (2016)Google Scholar
  9. 9.
    O. Yong, J. Salimon, Ind. Crop Prod. 24, 146 (2006)CrossRefGoogle Scholar
  10. 10.
    AOAC, Official Methods of Analysis of AOAC International, 16th edn. (AOAC, Washington DC, 2008)Google Scholar
  11. 11.
    AOCS, Official methods and recommended practices of the American Oil Chemists’ Society, 4th Edn. (AOCS, Illinois, 1996)Google Scholar
  12. 12.
    C. Capannesi, I. Palchetti, M. Mascini, A. Parenti, Food Chem. 71, 553 (2000)CrossRefGoogle Scholar
  13. 13.
    A.S. Bhatnagar, J. Hemavathy, A.G. Gopala Krishna, J. Food Sci. Technol. 52, 521 (2015)Google Scholar
  14. 14.
    M. Al-Bachir, Food Chem. 197, 191 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    J. Wasswa, J. Tang, X. Gu, X. Yuan, Food Chem. 104, 1698 (2007)CrossRefGoogle Scholar
  16. 16.
    F.M. Diniz, A.M. Martin, Int. J. Food Sci. Nutr. 48, 191 (1997)CrossRefPubMedGoogle Scholar
  17. 17.
    S. Krishnaveni, T. Balasubramanian, S. Sadasivam, Food Chem. 15, 229 (1984)CrossRefGoogle Scholar
  18. 18.
    S. Ogunwolu, F. Henshaw, H.P. Mock, A. Santros, S. Awonorin, Food Chem. 115, 852 (2009)CrossRefGoogle Scholar
  19. 19.
    S.L. Rodriguez-Ambiz, A.L. Martinez-Ayala, F. Millan, G. Davila-Ortiz, Plant Food Hum. Nutr. 60, 99 (2005)CrossRefGoogle Scholar
  20. 20.
    N. Souissi, A. Bougatef, Y. Triki-Ellouz, M. Nasri, Food Technol. Biotechnol. 45, 187 (2007)Google Scholar
  21. 21.
    V. Klompong, S. Benjakul, D. Kantachote, F. Shahidi, Food Chem. 102, 1317 (2007)CrossRefGoogle Scholar
  22. 22.
    H.W. Robinson, C.G. Hodgen, J. Biol. Chem. 135, 707 (1940)Google Scholar
  23. 23.
    K.N. Pearce, J.E. Kinsella, J. Agric. Food Chem. 26, 716 (1978)CrossRefGoogle Scholar
  24. 24.
    S.P.J. Kumar, S.R. Prasad, R. Banerjee, D.K. Agarwal, K.S. Kulkarni, K.V. Ramesh, Chem. Central J. 11, 9 (2017)CrossRefGoogle Scholar
  25. 25.
    B.P. Lamsal, P.A. Murphy, L.A. Johnson, J. Am. Oil Chem. Soc. 83, 973 (2006)CrossRefGoogle Scholar
  26. 26.
    L. Jiang, D. Hua, Z. Wang, S. Xu, Food Bioprod. Process. 88, 233 (2010)CrossRefGoogle Scholar
  27. 27.
    S.B. Zhang, Q.Y. Lu, H. Yang, Y. Li, S. Wang, J. Am. Oil Chem. Soc. 88, 727 (2011)CrossRefGoogle Scholar
  28. 28.
    R.A. Moreau, C. Dickey, D.B. Johnston, K.B. Hicks, J. Am. Oil Chem. Soc. 86, 469 (2009)CrossRefGoogle Scholar
  29. 29.
    H.G. Kristinsson, B.A. Rasco, Crit. Rev. Food Sci. Nutr. 40, 43 (2000)CrossRefPubMedGoogle Scholar
  30. 30.
    A. Ansharullah, J.A. Hourigan, C.F. Chesterman, J. Sci. Food Agric. 74, 141 (1997)CrossRefGoogle Scholar
  31. 31.
    E.W. Hammond, Vegetable oils: Composition and Analysis, in Encyclopedia of Food Sciences and Nutrition, ed. by B. Caballero, P. Finglas, L. Trugo (Academic Press, Cambridge, 2003), pp. 5916–5921CrossRefGoogle Scholar
  32. 32.
    H.S. Lam, A. Proctor, J.F. Meullenet, J. Am. Oil Chem. Soc. 78, 1271 (2001)CrossRefGoogle Scholar
  33. 33.
    S.M. Abdulkarim, K. Long, O.M. Lai, S.K.S. Muhammad, H.M. Ghazali, Food Chem. 93, 253 (2005)CrossRefGoogle Scholar
  34. 34.
    S. Latif, F. Anwar, L.L. Diosady, Eur. J. Lipid Sci. Technol. 110, 887 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Azmir, I.S.M. Zaidul, M.M. Rahman, K.M. Sharif, A. Mohamed, F. Sahena, M.H.A. Jahurul, K. Ghafoor, N.A.N. Norulaini, J. Food Eng. 117, 426 (2013)CrossRefGoogle Scholar
  36. 36.
    N.E. Durling, O.J. Catchpole, J.B. Grey, R.F. Webby, K.A. Mitchell, L.Y. Foo, N.B. Perry, Food Chem. 101, 1417 (2007)CrossRefGoogle Scholar
  37. 37.
    A. Ranalli, T. Gomes, D. Delcuratolo, S. Contento, L. Lucera, J. Agric. Food Chem. 51, 2597 (2003)CrossRefPubMedGoogle Scholar
  38. 38.
    R. Alrahmany, A. Tsopmo, Food Chem. 132, 413 (2012)CrossRefPubMedGoogle Scholar
  39. 39.
    D. Sogi, S. Garg, A. Bawa, J. Food Sci. 67, 2997 (2002)CrossRefGoogle Scholar
  40. 40.
    R. Kankanamge, C. Jeewanthi, H.D. Piak, M.H. Kim, N.A.K. Lee, S.Y. Kim, Y.C. Yoon, Chem. Ind. Chem. Eng. Q. 20, 503 (2014)CrossRefGoogle Scholar
  41. 41.
    V. Muhamyankaka, C. Shoemaker, M. Nalwoga, X. Zhang, Int. Food Res. J. 20, 2227 (2013)Google Scholar
  42. 42.
    P. Niemi, D. Martins, J. Buchert, C.B. Faulds, Bioresour. Technol. 136, 529 (2009)CrossRefGoogle Scholar
  43. 43.
    M.D.M. Yust, J. Pedroche, M.D.C. Millán-Linares, J.M. Alcaide-Hidalgo, F. Millán, Food Chem. 122, 1212 (2010)CrossRefGoogle Scholar
  44. 44.
    S. Jain, A.K. Anal, LWT-Food Sci. Technol. 69, 295 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Technology, Faculty of Agricultural EngineeringSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations