Advertisement

Effects of ball milling micronization on amino acids profile and antioxidant activities of Polygonatumcyrtonema Hua tuber powder

  • Yue Yu
  • Zhanming LiEmail author
  • Guangtian Cao
  • Shuailing Li
  • Hongshun YangEmail author
Original Paper
  • 8 Downloads

Abstract

Recently, edible and medicinal plants have attracted intensive attention as functional foods because of their biological activities. However, there has been little research on the influence of ball milling micronization on the properties of the Polygonatum powder. In this study, ball milling was used to micronize Polygonatumcyrtonema Hua tuber coarse powder to observe the effects on amino acids profile and antioxidant activities. Different ball milling times produced significant differences in the total polyphenols, amino acids, and soluble sugar contents (P < 0.05). The multiple linearities between total amino acids content, soluble sugar content, and ABTS radical scavenging activity revealed the relationship between antioxidant activities and ingredients. Moreover, the different cluster tendency by principal components analysis (PCA) and cluster analysis indicated the effects of different ball milling times. It was also highlighted that asparagine, α-aminobutyric acid, and valine can be used as the biomarkers to describe the effects of ball milling time by orthogonal partial least squares discriminant analysis (OPLS-DA). In summary, amino acids profile and antioxidant activities of Polygonatumcyrtonema Hua tuber powder were significantly influenced by different ball milling time. The present study provided a foundation for research on the potential application of Polygonatum tuber micronization and the development of dietary supplements and functional foods.

Keywords

Polygonatum Amino acid Orthogonal partial least squares discriminant analysis Biomarker Antioxidant activity 

Notes

Acknowledgments

Financially support from Natural Science Foundation of Zhejiang Province, China (Grant No. LQ17C200002) and Public Welfare Project of Huzhou, China (Grant No. 2018GZ28) was gratefully acknowledged. We also thank the China Scholarship Council (CSC) for scholarship support.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. 1.
    Z. Lin, J. Chen, J. Zhang, M.S. Brooks, Food Bioprocess Tech. 11, 901–912 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Erfanian, H. Mirhosseini, B. Rasti, M. Hair-Bejo, S.B. Mustafa, M.Y.A. Manap, J. Agric. Food Chem. 63, 5795–5804 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Erfanian, B. Rasti, Y. Manap, Food Chem. 214, 606–613 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Fu, X. Yang, S. Lai, C. Liu, S. Huang, H. Yang, J. Funct. Foods. 14, 23–32 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Recharla, M. Riaz, S. Ko, S. Park, J. Funct. Foods. 39, 63–73 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Shariati-Ievari, D. Ryland, A. Edel, T. Nicholson, M. Suh, M. Aliani, J. Food Sci. 81, 1230–1242 (2016)CrossRefGoogle Scholar
  7. 7.
    I. De Marco, E. Reverchon, Chem. Eng. J. 187, 401–409 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Fidaleo, N.A. Miele, S. Mainardi, V. Armini, R. Nardi, S. Cavella, LWT-Food. Sci. Technol. 79, 242–250 (2017)Google Scholar
  9. 9.
    A. Karadag, B. Ozcelik, Q. Huang, J. Agric. Food Chem. 62, 1852–1859 (2014)CrossRefGoogle Scholar
  10. 10.
    D.T. Santos, M.A.A. Meireles, J. Food Process Eng. 36, 36–49 (2013)CrossRefGoogle Scholar
  11. 11.
    Q. Meng, H. Fan, D. Xu, W. Aboshora, Y. Tang, T. Xiao, L. Zhang, Int. J. Food Sci. Tech. 52, 1440–1451 (2017)CrossRefGoogle Scholar
  12. 12.
    M.S. Dayal, J.M. Catchmark, Carbohydr. Polym. 144, 447–453 (2016)CrossRefGoogle Scholar
  13. 13.
    D.M. Amaya-Cruz, I.F. Perez-Ramirez, D. Ortega-Diaz, M.E. Rodriguez-Garcia, R. Reynoso-Camacho, J. Food Meas. Charact. 12, 135–144 (2018)CrossRefGoogle Scholar
  14. 14.
    S.S. Singh, B.M. Ghodki, T. Goswami, J. Food Meas. Charact. 12, 1686–1694 (2018)CrossRefGoogle Scholar
  15. 15.
    S. Protonotariou, A. Drakos, V. Evageliou, C. Ritzoulis, I. Mandala, J. Food Eng. 134, 24–29 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Wu, C. Wu, H. Chen, Z. Wang, C. Yu, M. Du, Int. J. Mol. Sci. 19, 531 (2018)CrossRefGoogle Scholar
  17. 17.
    F. Zhu, B. Du, R. Li, J. Li, Biocatal. Agr. Biotechnol. 3, 30–34 (2014)Google Scholar
  18. 18.
    Z. Qu, J. Zhang, H. Yang, J. Gao, H. Chen, C. Liu, W. Gao, J. Agr. Food Chem. 65, 291–300 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Yan, J. Lu, Y. Wang, W. Gu, X. Yang, J. Yu, Phytomedicine. 26, 45–54 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Xu, Z. Jin, A. Peckrul, B. Chen, Food Chem. 250, 140–147 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, L. Luo, C. Liao, L. Chen, J. Wang, L. Zeng, Food Chem. 269, 24–34 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Zeng, W. Cai, X. Shao, J. Sep. Sci. 38, 2053–2058 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Chen, G.J.T. Tan, X. Pang, W. Yuan, S. Lai, H. Yang, J. Agr. Food Chem 66, 6975–6985 (2018)CrossRefGoogle Scholar
  24. 24.
    S.J. Hwang, W.B. Yoon, O.H. Lee, S.J. Cha, J. Dai Kim, Food Chem 146, 71–77 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Kupski, E. Badiale-Furlong, Food Chem. 177, 354–360 (2015)CrossRefGoogle Scholar
  26. 26.
    Q. Liu, J. Wu, Z.Y. Lim, A. Aggarwal, H. Yang, S. Wang, LWT-Food. Sci. Technol. 79, 428–436 (2017)Google Scholar
  27. 27.
    T.T. Sham, M.H. Li, C.O. Chan, H. Zhang, S.W. Chan, D.K. Mok, J. Funct. Foods. 28, 127–137 (2017)CrossRefGoogle Scholar
  28. 28.
    B.D. Oomah, L. Kotzeva, M. Allen, P.Z. Bassinello, J. Sci. Food Agr. 94, 1349–1358 (2014)CrossRefGoogle Scholar
  29. 29.
    P.J. Lee, S. Chen, J. Food Sci. Tech. 53, 1551–1560 (2016)CrossRefGoogle Scholar
  30. 30.
    I. Wang, C. Wang, W. Li, Y. Pan, G. Yuan, H. Chen, Int. J. Food Sci. Tech. 51, 2193–2200 (2016)CrossRefGoogle Scholar
  31. 31.
    P. Mattila, P. Salo-Väänänen, K. Könkö, H. Aro, T. Jalava, J. Agr. Food Chem. 50, 6419–6422 (2002)CrossRefGoogle Scholar
  32. 32.
    X. Liu, Z. Wan, L. Shi, X. Lu, Carbohydr. Polym. 83, 737–742 (2011)CrossRefGoogle Scholar
  33. 33.
    C.T. Horng, J.K. Huang, H.Y. Wang, C.C. Huang, F.A. Chen, Nutrients. 6, 5327–5337 (2014)CrossRefGoogle Scholar
  34. 34.
    W. Deng, Y. Wang, Z. Liu, H. Cheng, Y. Xue, PLoS ONE. 9, e111988 (2014)CrossRefGoogle Scholar
  35. 35.
    I. Chen, J. Wu, Z. Li, Q. Liu, X. Zhao, H. Yang, Food Chem. 286, 87–97 (2019)CrossRefGoogle Scholar
  36. 36.
    F. dosSantosGrasel, M.F. Ferrão, C.R. Wolf, FSpectrochim. Acta A. 153, 94–101 (2016)CrossRefGoogle Scholar
  37. 37.
    A.M. Alashi, C.L. Blanchard, R.J. Mailer, S.O. Agboola, A.J. Mawson, R. He, A. Girgih, R.E. Aluko, Food Chem. 146, 500–506 (2014)CrossRefGoogle Scholar
  38. 38.
    H.S. Kim, S.J. Hur, J. Food Sci. 83, 1816–1822 (2018)CrossRefGoogle Scholar
  39. 39.
    I. Ramachandraiah, K.B. Chin, Innov. Food Sci. Emerg. 37, 115–124 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Butsat, S. Siriamornpun, Food Chem. 119, 606–613 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Sahreen, M.R. Khan, R.A. Khan, Food Chem. 122, 1205–1211 (2010)CrossRefGoogle Scholar
  42. 42.
    A. Granato, V.M.A. de Calado, B. Jarvis, Food Res. Int. 55, 137–149 (2014)CrossRefGoogle Scholar
  43. 43.
    Y.H. Chou, C.M. Tiu, G.S. Hung, S.C. Wu, T.Y. Chang, H.K. Chiang, Ultrasound Med. Biol. 27, 1493–1498 (2001)CrossRefGoogle Scholar
  44. 44.
    I. Li, K. Thakur, B. Liao, J. Zhang, Z. Wei, Int. J. Biol. Macromol. 114, 317–323 (2018)CrossRefGoogle Scholar
  45. 45.
    H. Zhang, Y. Cao, L. Chen, J. Wang, Q. Tian, N. Wang, Z. Liu, J. Li, N. Wang, X. Wang, Carbohydr. Polym. 117, 879–886 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food ScienceChina Jiliang UniversityHangzhouPeople’s Republic of China
  2. 2.Food Science and Technology Programme, c/o Department of ChemistryNational University of SingaporeSingaporeSingapore
  3. 3.Hangzhou Linda High-Tech Biotechnology Company, LimitedHangzhouPeople’s Republic of China

Personalised recommendations