Advertisement

Using deep learning and hyperspectral imaging to predict total viable count (TVC) in peeled Pacific white shrimp

  • Xinjie YuEmail author
  • Xin Yu
  • Shiting Wen
  • Jinqiu Yang
  • Jianping WangEmail author
Original Paper
  • 36 Downloads

Abstract

In this study, deep learning method coupled with near-infrared (NIR) hyperspectral imaging (HSI) technique was used for nondestructively determining total viable count (TVC) of peeled Pacific white shrimp. Firstly, stacked auto-encoders (SAE) was conducted as a big data analytical method to extract 20 deep hyperspectral features from NIR hyperspectral image (900–1700 nm) of peeled shrimp stored at 4 °C, and the extracted features were used to predict TVC by fully-connected neural network (FNN). The SAE–FNN method obtained high prediction accuracy for determining TVC, with R P 2  = 0.927. Additionally, TVC spatial distribution of peeled shrimp during storage could be visualized via applying the established SAE–FNN model. The results demonstrate that SAE–FNN combined with HSI technique has a potential for non-destructive prediction of TVC in peeled shrimp, which supply a novel method for the hygienic quality and safety inspections of shrimp product.

Keywords

Hyperspectral image Microbial spoilage Deep learning Stacked auto-encoders Fully-connected neural network Nondestructive detection method 

Notes

Acknowledgements

This research was funded by Ningbo Science and Technology Special Project of China, Grant Number (2017C110002); Natural Science Foundation of China, Grant Number (31201446); Zhejiang Provincial Natural Science Foundation of China, under the following Grant Numbers (LY17C190008, LY16F030012 and LY15F030016); Ningbo Science Foundation of China, Grant Number (2017A610118).

References

  1. 1.
    G. Valdimarsson, H. Einarsson, B. Gudbjörnsdottir, H. Magnusson, Microbiological quality of Icelandic cooked-peeled shrimp (Pandalus borealis). Int. J. Food Microbiol. 45(2), 157–161 (1998)CrossRefGoogle Scholar
  2. 2.
    X. Carrión-Granda, I. Fernández-Pan, I. Jaime, J. Rovira, J.I. Maté, Improvement of the microbiological quality of ready-to-eat peeled shrimps (Penaeus vannamei) by the use of chitosan coatings. Int. J. Food Microbiol. 232, 144–149 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Huang, J. Zhao, Q. Chen, Y. Zhang, Rapid detection of total viable count (TVC) in pork meat by hyperspectral imaging. Food Res. Int. 54, 821–828 (2013)CrossRefGoogle Scholar
  4. 4.
    H. Duan, R. Zhu, X. Yao, E. Lewis, Sensitive variables extraction, non-destructive detection and visualization of total viable count (TVC) and pH in vacuum packaged lamb using hyperspectral imaging. Anal. Methods 9(21), 3172–3183 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Tao, Y. Peng, C.L. Gomes, K. Chao, J. Qin, A comparative study for improving prediction of total viable count in beef based on hyperspectral scattering characteristics. J. Food Eng. 162, 38–47 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Wu, D.W. Sun, Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta 111, 39–46 (2013)CrossRefGoogle Scholar
  7. 7.
    J.H. Cheng, D.W. Sun, Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci. Technol. 62, 1060–1068 (2015)CrossRefGoogle Scholar
  8. 8.
    Z.E. Sikorski, A. Kolakowska, J.R. Burt, Postharvest biochemical and microbial changes, in Seafood: Resources, Nutritional Composition and Preservation, ed. by Z.E. Sikorski (CRC Press, Boca Raton, 1990), pp. 55–76Google Scholar
  9. 9.
    Q. Dai, D.W. Sun, Z. Xiong, J.H. Cheng, X.A. Zeng, Recent advances in data mining techniques and their applications in hyperspectral image processing for the food industry. Compr. Rev. Food. Sci. Food Saf. 13, 891–905 (2014)CrossRefGoogle Scholar
  10. 10.
    G. ElMasry, D.W. Sun, P. Allen, Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Res. Int. 44(9), 2624–2633 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Wu, H. Shi, Y. He, X. Yu, Y. Bao, Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn. J. Food Eng. 119(3), 680–686 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Kamruzzaman, G. ElMasry, D.W. Sun, P. Allen, Nondestructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chem. 141(1), 389–396 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal. Chim. Acta 535, 79–87 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning. Nature 521, 436–444 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Zhao, Z. Guo, J. Yue, X. Zhan, L. Luo, On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 36(13), 3368–3379 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Yang, Y.Q. Zhao, J.C.W. Chan, Learning and transferring deep joint spectral–spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 55, 4729–4742 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Yu, L. Tang, X. Wu, H. Lu, Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm. Food Anal. Meth. 11(3), 768–780 (2017)CrossRefGoogle Scholar
  18. 18.
    H.I. Suk, S.W. Lee, D. Shen, Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015)CrossRefGoogle Scholar
  19. 19.
    E. Biganzoli, P. Boracchi, L. Mariani, E. Marubini, Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat. Med. 17(10), 1169–1186 (1998)CrossRefGoogle Scholar
  20. 20.
    A. Rady, N. Ekramirad, A.A. Adedeji, M. Li, R. Alimardani, Hyperspectral imaging for detection of codling moth infestation in GoldRush apples. Postharvest Biol. Technol. 129, 37–44 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Wold, M. Sjostrom, L. Eriksson, PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001)CrossRefGoogle Scholar
  22. 22.
    F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)Google Scholar
  23. 23.
    J.A.K. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle, Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing. 48, 85–105 (2002)CrossRefGoogle Scholar
  24. 24.
    C. Tao, H. Pan, Y. Li, Z. Zou, Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2438–2442 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Huang, L. Wang, Accelerated Monte Carlo simulations with restricted Boltzmann machines. Phys. Rev. B (2017).  https://doi.org/10.1103/PhysRevB.95.035105 Google Scholar
  26. 26.
    C. Xing, L. Ma, X. Yang, Stacked denoise autoencoder based feature extraction and classification for hyperspectral images. J. Sens. (2016).  https://doi.org/10.1155/2016/3632943 Google Scholar
  27. 27.
    K. Gopalakrishnan, S.K. Khaitan, A. Choudhary, A. Agrawal, Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017)CrossRefGoogle Scholar
  28. 28.
    F. Chollet, Keras: theano-based deep learning library. https://github.com/fchollet. Accessed 4 Sept 2018
  29. 29.
    R.A.V. Rossel, R.N. McGlynn, A.B. McBratney, Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 137, 70–82 (2006)CrossRefGoogle Scholar
  30. 30.
    H. Mu, H. Chen, X. Fang, J. Mao, H. Gao, Effect of cinnamaldehyde on melanosis and spoilage of Pacific white shrimp (Litopenaeus vannamei) during storage. J. Sci. Food Agric. 92, 2177–2182 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Cadun, S. Cakli, D. Kisla, A study of marination of deepwater pink shrimp (Parapenaeus longirostris, Lucas, 1846) and its shelf life. Food Chem. 90, 53–59 (2005)CrossRefGoogle Scholar
  32. 32.
    D. Wu, H. Shi, S. Wang, Y. He, Y. Bao, K. Liu, Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal. Chim. Acta 726, 57–66 (2012)CrossRefGoogle Scholar
  33. 33.
    I. Murray, P.C. Williams, Chemical principles of near-infrared technology, in Near-infrared Technology in the Agricultural and Food Industries, 2nd edn., ed. by P.C. Williams, K. Norris (American Association of Cereal Chemists, St. Paul, 2001), pp. 23–26Google Scholar
  34. 34.
    S.C. Flores, D.L. Crawford, Postmortem quality changes in iced Pacific shrimp (Pandalus jordani). J. Food Sci. 38(4), 575–579 (1973)CrossRefGoogle Scholar
  35. 35.
    D.F. Barbin, G. ElMasry, D.W. Sun, P. Allen, N. Morsy, Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 17, 180–191 (2013)CrossRefGoogle Scholar
  36. 36.
    W. Huang, G. Song, H. Hong, K. Xie, Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ningbo Institute of TechnologyZhejiang UniversityNingboChina
  2. 2.Ningbo Marine and Fishery Research InstituteNingboChina

Personalised recommendations