Advertisement

Sage (Salvia pilifera): determination of its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities

  • İlhami GülçinEmail author
  • Ahmet Zafer Tel
  • Ahmet C. Gören
  • Parham Taslimi
  • Saleh H. Alwasel
Original Paper
  • 18 Downloads

Abstract

In this work, we determined for the first time the Salvia pilifera Montbret & Aucher ex Bentham as an important source for natural products with antioxidant and antidiabetic potentials. In this context, methanol (MESP) and water (WESP) extracts were prepared from aerial parts of S. pilifera. Also, it was evaluated for antioxidant profile by eight distinguishes bioanalytical methods and inhibition effects against enzymes linked to different diseases, namely butyrylcholinesterase (BChE), acetylcholinesterase (AChE), α-glycosidase and α-amylase. Also, the polyphenolic compositions of MESP and WESP were evaluated by high performance liquid chromatography and tandem mass spectrometry (LC–MS/MS). Fourteen phenolics were identified in the evaporated MESP and thirteen phenolic compounds were identified in the lyophilized WESP. Also, we performed the antioxidant properties of both extracts. In order to estimate the capacity of MESP and WESP to act as antioxidants, 1,1-diphenyl-2-picryl-hydrazyl radicals (DPPH·), 2,2´-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS·+) and N,N-dimethyl-p-phenylenediamine radicals (DMPD·+), scavenging activities, ferric ions (Fe3+), Fe3+-TPTZ and cupric ions (Cu2+) reducing assays were studied. MESP and WESP were found as potent effective DPPH· (IC50: 7.05 and 8.56 μg/mL), ABTS·+ (IC50: 3.52 and 4.76 μg/mL) and DMPD·+ (IC50: 28.92 and 30.95 μg/mL) scavenging effects. On the other hand, MESP and WESP showed the potent inhibition effects against AChE (IC50: 94.93 and 138.61 μg/mL), BChE (IC50: 60.05 and 99.13 μg/mL), α-glycosidase (IC50: 23.28 and 36.47 μg/mL) and α-amylase (IC50: 46.21 and 97.67 μg/mL) enzymes. This study will be an innovative and guider for further studies for antioxidant properties for industrial or medicinal plants.

Keywords

Salvia pilifera Antioxidant activity Polyphenol content Enzyme inhibition LC–MS/MS 

Notes

Acknowledgement

S.A. would like to extend his sincere appreciation to the Distinguished Scientist Fellowship Program at King Saud University for funding this research.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interests.

References

  1. 1.
    M.J. Rodrigues, C.A. Pereira, M. Oliveira, N.R. Neng, J.M.F. Nogueir, G. Zengin, M.F. Mahomoodallyd, L. Custodio, Ind. Crops Prod. 121, 250–257 (2018)Google Scholar
  2. 2.
    M. Elmastas, S.M. Celik, N. Genc, H. Aksit, R. Erenler, İ. Gulçin, Int. J. Food Prop. 21, 374–384 (2018)Google Scholar
  3. 3.
    A. Dalar, M. Mukemre, M. Unal, F. Ozgokce, J. Ethnopharmacol. 226, 56–72 (2018)Google Scholar
  4. 4.
    M. Coşkun, A.M. Gençler-Özkan, Phytochemistry 66, 956–960 (2005)Google Scholar
  5. 5.
    J.J. Villaverde, P. Sandín-españa, B. Sevilla-morán, C. López-goti, J.L. Alonso-prados, BioResource 11, 5618–5640 (2016)Google Scholar
  6. 6.
    M.F. Mahomoodally, S. Vlaisavljevic, S. Berezni, H.H. Abdallah, G. Zengine, A.G. Atanasov, A. Mollica, D. Lobine, A. Aktumsek, Ind. Crops Prod. 120, 270–278 (2018)Google Scholar
  7. 7.
    G. Zengin, Z. Aumeeruddy-Elalfi, A. Mollica, M.A. Yilmaz, M.F. Mahomoodally, Phytomedicine 38, 35–44 (2018)Google Scholar
  8. 8.
    M. Sharifi-Rad, B. Ozcelik, G. Altın, C. Daşkaya-Dikmen, M. Martorell, K. Ramírez-Alarcón, P. Alarcón-Zapata, M.F.B. Morais-Braga, J.N.P. Carneiro, A.L.A.B. Leal, H.D.M. Coutinho, R. Gyawali, R. Tahergorabi, S.A.I.R. Sahrifi-Rad, F. Sharopov, B. Saleh, M. del Mar Contreras, A. Segura-Carretero, S. Sen, K. Acharya, J. Sharifi-Rad, Trends Food Sci. Technol. 80, 242–263 (2018)Google Scholar
  9. 9.
    I.E. Orhan, F.S. Senol, N. Ozturk, G. Akaydin, B. Sener, Food Chem. 132, 1360–1367 (2012)Google Scholar
  10. 10.
    C. Franz, J. Novak, in Handbook of Essential Oils, Science, Technology, vol. 994, ed. by K.H.C. Baser, G. Buchbauer (CRC Press, London, 2010)Google Scholar
  11. 11.
    P. Taslimi, I. Gulcin, J. Food Biochem. 42(3), e12516 (2018)Google Scholar
  12. 12.
    I. Gulcin, R. Elias, A. Gepdiremen, L. Boyer, Eur. Food Res. Technol. 223, 759–767 (2006)Google Scholar
  13. 13.
    M. Elmastas, I. Gulcin, Ö. Işıldak, Öİ. Küfrevioğlu, K. İbaoğlu, H.Y. Aboul-Enein, J. Iran. Chem. Soc. 3(3), 258–266 (2006)Google Scholar
  14. 14.
    I. Gulcin, Innov. Food Sci. Emerg. Technol. 11, 210–218 (2010)Google Scholar
  15. 15.
    I. Gulcin, Arch. Toxicol. 86(3), 345–391 (2012)Google Scholar
  16. 16.
    T. Ak, I. Gulcin, Chem. Biol. Interact. 174, 27–37 (2008)Google Scholar
  17. 17.
    I. Gulcin, Chem. Biol. Interact. 179(2–3), 71–80 (2009)Google Scholar
  18. 18.
    I. Gulcin, R. Elias, A. Gepdiremen, K. Taoubi, E. Köksal, Wood Sci. Technol. 43(3–4), 195–212 (2009)Google Scholar
  19. 19.
    E. Bursal, I. Gulcin, Food Res. Int. 44(5), 1482–1489 (2011)Google Scholar
  20. 20.
    I. Gulcin, S. Beydemir, Mini Rev. Med. Chem. 13(3), 408–430 (2013)Google Scholar
  21. 21.
    B. Halliwell, M.A. Murcia, S. Chirico, O.I. Aruoma, Crit. Rev. Food Sci. Nutr. 35, 7–20 (1995)Google Scholar
  22. 22.
    I. Gulcin, M. Elmastaş, H.Y. Aboul-Enein, Arab. J. Chem. 5(4), 489–499 (2012)Google Scholar
  23. 23.
    E. Bursal, E. Köksal, I. Gulcin, G. Bilsel, A.C. Gören, Food Res. Int. 51, 66–74 (2013)Google Scholar
  24. 24.
    H.C. Ko, J.Y. Lee, M.G. Jang, H. Song, S.J. Kim, Ind. Crops Prod. 122, 506–512 (2018)Google Scholar
  25. 25.
    S. Çakmakçı, E.F. Topdaş, P. Kalın, H. Han, P. Şekerci, L. Polat Kose, I. Gulcin, Int. J. Food Sci. Technol. 50(2), 472–481 (2015)Google Scholar
  26. 26.
    Y. Lu, Y. Du, X. Qin, H. Wu, Y. Huang, Y. Cheng, Y. Wei, Ind. Crops Prod. 129, 242–252 (2019)Google Scholar
  27. 27.
    E. Köksal, I. Gulcin, Turk. J. Agric. For. 32(1), 65–78 (2008)Google Scholar
  28. 28.
    E. Köksal, I. Gulcin, S.B. Öztürk Sarıkaya, E. Bursal, J. Enzyme Inhib. Med. Chem. 24(2), 395–405 (2009)Google Scholar
  29. 29.
    I. Gulcin, R. Elias, A. Gepdiremen, A. Chea, F. Topal, J. Enzyme Inhib. Med. Chem. 25(1), 44–53 (2010)Google Scholar
  30. 30.
    S.S. Wang, D.M. Wang, Z.H. Liu, Ind. Crops Prod. 67, 227–238 (2015)Google Scholar
  31. 31.
    I. Gulcin, Z. Huyut, M. Elmastaş, H.Y. Aboul-Enein, Arab. J. Chem. 3, 43–53 (2010)Google Scholar
  32. 32.
    I. Gulcin, S. Beydemir, F. Topal, N. Gagua, A. Bakuridze, R. Bayram, A. Gepdiremen, J. Enzyme Inhib. Med. Chem. 27(4), 587–594 (2012)Google Scholar
  33. 33.
    M.H. Sehitoglu, H. Han, P. Kalin, I. Gulcin, A. Ozkan, H.Y. Aboul-Enein, J. Enzyme Inhib. Med. Chem. 30(2), 264–269 (2015)Google Scholar
  34. 34.
    B. Yigit, M. Yiğit, D. Barut Celepci, Y. Gök, A. Aktaş, M. Aygün, P. Taslimi, I. Gulcin, ChemistrySelect 3(27), 7976–7982 (2018)Google Scholar
  35. 35.
    B. Yigit, R. Kaya, P. Taslimi, Y. Işık, M. Karaman, M. Yiğit, İ. Özdemir, I. Gulcin, J. Mol. Struct. 1179, 709–718 (2019)Google Scholar
  36. 36.
    A. Bicer, P. Taslimi, G. Yakali, I. Gulcin, M.S. Gültekin, G. Turgut Cin, Bioorg. Chem. 82, 393–404 (2019)Google Scholar
  37. 37.
    M. Zengin, H. Genç, P. Taslimi, A. Kestane, E. Güçlü, A. Ögütlü, O. Karabay, I. Gulcin, Bioorg. Chem. 81, 119–126 (2018)Google Scholar
  38. 38.
    M. Huseynova, P. Taslimi, A. Medjidov, V. Farzaliyev, M. Aliyeva, G. Gondolova, O. Şahin, B. Yalçın, A. Sujayev, E.B. Orman, A.R. Özkaya, I. Gulcin, Polyhedron 155, 25–33 (2018)Google Scholar
  39. 39.
    D. Wilkinson, Psychiatry 7, 9–14 (2007)Google Scholar
  40. 40.
    M. Rezai, Ç. Bayrak, P. Taslimi, I. Gulcin, A. Menzek, Turk. J. Chem. 42, 808–825 (2018)Google Scholar
  41. 41.
    U.M. Kocyigit, Y. Budak, M.B. Gürdere, F. Ertürk, B. Yencilek, P. Taslimi, I. Gulcin, M. Ceylan, Arch. Physiol. Biochem. 124, 61–68 (2018)Google Scholar
  42. 42.
    I. Gulcin, P. Taslimi, A. Aygün, N. Sadeghian, E. Bastem, Öİ. Küfrevioğlu, F. Turkan, F. Şen, Int. J. Biol. Macromol. 119, 741–746 (2018)Google Scholar
  43. 43.
    P. Taslimi, H.E. Aslan, Y. Demir, N. Öztaşkın, A. Maraş, I. Gulcin, Ş. Beydemir, Ş. Göksu, Int. J. Biol. Macromol. 119, 857–863 (2018)Google Scholar
  44. 44.
    Y. Demir, P. Taslimi, M.S. Ozaslan, N. Oztaskın, Y. Çetinkaya, I. Gulcin, S. Beydemir, Arch. Pharm. 351(12), e1800263 (2018)Google Scholar
  45. 45.
    F. Turkan, A. Çetin, P. Taslimi, I. Gulcin, Arch. Pharm. 351(10), e1800200 (2018)Google Scholar
  46. 46.
    P.H. Davis, Flora of Turkey and the East Aegean Islands, vol. 1–9(7) (Edinburgh University Press, Edinburgh, 1965–1988), p. 417Google Scholar
  47. 47.
    H. Tohma, I. Gulcin, E. Bursal, A.C. Gören, S.H. Alwasel, E. Köksal, J. Food Meas. 11(2), 556–566 (2017)Google Scholar
  48. 48.
    P. Kalin, I. Gulcin, A.C. Gören, Rec. Nat. Prod. 9(4), 496–502 (2015)Google Scholar
  49. 49.
    V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144–158 (1965)Google Scholar
  50. 50.
    I. Gulcin, A.Z. Tel, E. Kirecci, Int. J. Food Prop. 11(2), 450–471 (2008)Google Scholar
  51. 51.
    I. Gulcin, E. Bursal, H.M. Şehitoğlu, M. Bilsel, A.C. Gören, Food Chem. Toxicol. 48(8–9), 2227–2238 (2010)Google Scholar
  52. 52.
    I. Gulcin, F. Topal, R. Çakmakçı, A.C. Gören, M. Bilsel, U. Erdoğan, J. Food Sci. 76(4), C585–C593 (2011)Google Scholar
  53. 53.
    M. Oyaizu, Jpn. J. Nutr. 44, 307–315 (1986)Google Scholar
  54. 54.
    H. Göçer, I. Gulcin, Int. J. Food Sci. Nutr. 62(8), 821–825 (2011)Google Scholar
  55. 55.
    I. Gulcin, J. Med. Food 14(9), 975–985 (2011)Google Scholar
  56. 56.
    R. Apak, K. Guclu, M. Ozyurek, S.E. Karademir, E. Ercag, Int. J. Food Sci. Nutr. 57, 292–304 (2006)Google Scholar
  57. 57.
    E. Köksal, I. Gulcin, Turk. J. Agric. For. 32, 65–78 (2008)Google Scholar
  58. 58.
    O. Talaz, I. Gulcin, S. Göksu, N. Saracoglu, Bioorg. Med. Chem. 17(18), 6583–6589 (2009)Google Scholar
  59. 59.
    Y. Çetinkaya, H. Göçer, A. Menzek, I. Gulcin, Arch. Pharm. 345(4), 323–334 (2012)Google Scholar
  60. 60.
    T.C.P. Dinis, V.M.C. Madeira, L.M. Almeida, Arch. Biochem. Biophys. 315, 161–169 (1994)Google Scholar
  61. 61.
    Z. Huyut, S. Beydemir, I. Gulcin, Biochem. Res. Int. 2017, 7616791 (2017)Google Scholar
  62. 62.
    F. Ozbey, P. Taslimi, I. Gulcin, A. Maraş, S. Goksu, C.T. Supuran, J. Enzyme Inhib. Med. Chem. 31(S2), 79–85 (2016)Google Scholar
  63. 63.
    I.F.F. Benzie, J.J. Strain, Methods Enzymol. 299, 15–27 (1999)Google Scholar
  64. 64.
    M.S. Blois, Nature 26, 1199–1200 (1958)Google Scholar
  65. 65.
    I. Gulcin, Toxicology 217(2–3), 213–220 (2006)Google Scholar
  66. 66.
    I. Gulcin, Life Sci. 78(8), 803–811 (2006)Google Scholar
  67. 67.
    I. Gulcin, J. Enzyme Inhib. Med. Chem. 23(6), 871–876 (2008)Google Scholar
  68. 68.
    H.T. Balaydın, I. Gulcin, A. Menzek, S. Göksu, E. Şahin, J. Enzyme Inhib. Med. Chem. 25(5), 685–695 (2010)Google Scholar
  69. 69.
    G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherston, Biochem. Pharmacol. 7, 88–95 (1961)Google Scholar
  70. 70.
    A. Akincioglu, H. Akıncıoğlu, I. Gulcin, S. Durdağı, C.T. Supuran, S. Göksu, Bioorg. Med. Chem. 23(13), 3592–3602 (2015)Google Scholar
  71. 71.
    N. Oztaskin, Y. Çetinkaya, P. Taslimi, S. Göksu, I. Gulcin, Bioorg. Chem. 60, 49–57 (2015)Google Scholar
  72. 72.
    Y. Tao, Y. Zhang, Y. Cheng, Y. Wang, Biomed. Chromatogr. 27, 148–155 (2013)Google Scholar
  73. 73.
    G. Gondolova, P. Taslimi, A. Medjidov, F. Farzaliyev, A. Sujayev, M. Huseuinova, O. Şahin, B. Yalçın, F. Turkan, I. Gulcin, J. Biochem. Mol. Toxicol. 32(9), e22197 (2018)Google Scholar
  74. 74.
    Z. Xiao, R. Storms, A. Tsang, Anal. Biochem. 351, 146–148 (2006)Google Scholar
  75. 75.
    S.B. Oztürk Sarıkaya, F. Topal, M. Şentürk, I. Gulcin, C.T. Supuran, Bioorg. Med. Chem. Lett. 21(14), 4259–4262 (2011)Google Scholar
  76. 76.
    J. Dai, R.J. Mumper, Molecules 15, 7313–7352 (2010)Google Scholar
  77. 77.
    M.J. Del Bano, J. Lorente, J. Castillo, O. Benavente-García, J.A. del Río, A. Ortuno, K.W. Quirin, D.J. Gerard, Environ. Agric. Res. 6, 236–241 (2003)Google Scholar
  78. 78.
    L. Tomsone, Z. Kruma, R. Galoburda, Int. J. Agric. Food Chem. 51, 4247–4253 (2012)Google Scholar
  79. 79.
    V. Georgiev, A. Marchev, M. Nikolova, I. Ivanov, V. Gochev, A. Stoyanova, A. Pavlov, J. Essent. Oil Bear. Plants 16(5), 624–629 (2013)Google Scholar
  80. 80.
    G. Rafatian, F. Khodagholi, M.M. Farimani, S.B. Abraki, M. Gardaneh, Mol. Cell. Biochem. 371, 9–22 (2012)Google Scholar
  81. 81.
    O.S. Adeyemi, O. Atolani, P. Banerjee, G. Arolasafe, R. Preissner, P. Etukudoh, O. Ibraheem, Int. J. Food Prop. 21, 86–98 (2018)Google Scholar
  82. 82.
    C.A. Rice-Evans, N.J. Miller, G. Paganga, Free Radic. Biol. Med. 20, 933–956 (1996)Google Scholar
  83. 83.
    H. Gocer, A. Akıncıoğlu, N. Öztaşkın, S. Göksu, I. Gulcin, Arch. Pharm. 346(11), 783–792 (2013)Google Scholar
  84. 84.
    Y. Lu, L.Y. Foo, Phytochemistry 59, 117–140 (2002)Google Scholar
  85. 85.
    H. Han, H. Yılmaz, I. Gulcin, Rec. Nat. Prod. 12(4), 397–402 (2018)Google Scholar
  86. 86.
    N. Oztaskin, P. Taslimi, A. Maraş, S. Göksu, I. Gulcin, Bioorg. Chem. 74, 104–114 (2017)Google Scholar
  87. 87.
    M. Kelen, B. Tepe, Bioresour. Technol. 99, 4096–4104 (2008)Google Scholar
  88. 88.
    M. Kostic, B. Zlatkovic, B. Miladinovic, S. Zivanovic, T. Mihajilov-Krstev, D. Pavlovic, D. Kitic, J. Food Biochem. 39, 199–208 (2015)Google Scholar
  89. 89.
    E. Koksal, E. Bursal, I. Gulcin, M. Korkmaz, C. Çağlayan, A.C. Goren, S.H. Alwasel, Int. J. Food Prop. 20(3), 514–525 (2017)Google Scholar
  90. 90.
    K. Aksu, B. Özgeriş, P. Taslimi, A. Naderi, I. Gulcin, S. Göksu, Arch. Pharm. 349(12), 944–954 (2016)Google Scholar
  91. 91.
    I. Gulcin, Amino Acids 32, 431–438 (2007)Google Scholar
  92. 92.
    S. Okten, M. Ekiz, U.M. Koçyiğit, A. Tutar, İ. Çelik, M. Akkurt, M. Gökalp, P. Taslimi, I. Gulcin, J. Mol. Struct. 1175, 906–915 (2019)Google Scholar
  93. 93.
    S. Gonçalves, A. Romano, in Phenolic Compounds-Biological Activity, ed. by M. Soto-Hernandez, M. Palma-Tenango, M.R. Garcia-Mateos (InTech, London, 2017), pp. 99–118Google Scholar
  94. 94.
    L. Polat Köse, I. Gulcin, A.C. Gören, J. Namiesnik, A.L. Martinez-Ayala, S. Gorinstein, Ind. Crops Prod. 74, 712–721 (2015)Google Scholar
  95. 95.
    L.B. Roseiro, A.P. Rauter, M.L.M. Serralheiro, Nutr. Aging 1, 99–111 (2012)Google Scholar
  96. 96.
    N.S.L. Perry, C. Bollen, E.K. Perry, C. Ballard, Pharmacol. Biochem. Behav. 75, 651–659 (2003)Google Scholar
  97. 97.
    M.S. Kocak, C. Sarikurkcu, M. Cengiz, S. Kocak, M.C. Uren, B. Tepe, Ind. Crops Prod. 85, 204–212 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • İlhami Gülçin
    • 1
    • 2
    Email author
  • Ahmet Zafer Tel
    • 3
  • Ahmet C. Gören
    • 4
    • 5
  • Parham Taslimi
    • 1
  • Saleh H. Alwasel
    • 2
  1. 1.Department of Chemistry, Faculty of SciencesAtatürk UniversityErzurumTurkey
  2. 2.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Agricultural Biotechnology, Faculty of AgricultureIgdir UniversityIgdirTurkey
  4. 4.Department of Analytical Chemistry, Faculty of PharmacyBezmialem Vakif UniversityIstanbulTurkey
  5. 5.Drug Application and Research CenterBezmialem Vakif UniversityIstanbulTurkey

Personalised recommendations