Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2051–2061 | Cite as

Proanthocyanidins and anthocyanins contents, chromatic and antioxidant properties of red grape pomaces from morocco

  • Mohamed Ben AzizEmail author
  • François Garcia
  • Laetitia Mouls
  • Hélène Fulcrand
  • Hassan Hajjaj
Original Paper
  • 56 Downloads

Abstract

Proanthocyanidins (PAs) and anthocyanins contents of four different red grape pomaces (GPs) from Morocco were analysed using chromatographic methods. The GP skin pigments characteristics were determined using spectroscopic methods while their antioxidant activities were determined using both spectroscopic methods as ABTS and DPPH radical cations, ferric reducing/antioxidant power (FRAP) and electrochemical technique: cyclic Voltammetry (CV). The PA of seeds extracts varied significantly among the types of GP and ranged from 56.1 ± 0.3 mg g−1 dry weight (DW) in Cot to 88.4 ± 2.3 mg g−1 DW in non-fermented Cabernet Sauvignon (CSNF). The skins of CSNF contained the highest levels of PAs (22.1 ± 0.3 mg g−1 DW). The PAs average degree of polymerization distribution ranged from 2 to 45 subunits for the skins and from 2 to 12 subunits for the seeds. The maximum anthocyanins amounts and antioxidant activities were measured in Cot skin extracts (32.8 mg g−1 DW, DPPH: 0.23 mmol Trolox mg g−1 DW; ABTS: 0.38 mmol Trolox mg g−1 DW and CV: 1.73 × 10−3mA V) followed by Arinarnoa skin extracts which had the maximum corrected pigments (14.8 ± 0.1) and color power (152.4 ± 4.6 Unit color). The principal components analysis (PCA) of GP skins showed three different groups relevant to anthocyanins, PAs content, color and antioxidant properties.

Keywords

Grape pomace Proanthocyanidins Thioglycolysis Anthocyanins Antioxidant assays Cyclic voltammetry 

Abbreviations

GP

Grape pomace

PAs

Proanthocyanidins

CS

Fermented Cabernet Sauvignon

Ari

Fermented Arinarnoa

Cot

Fermented Cot

CSNF

Non-fermented Cabernet Sauvignon

aDP

Average degree of polymerization

% gall

Percentage of galloyalation

% prod

Percentage of prodelphenidin

% oxi

Percentage of oxidation

Notes

Acknowledgements

Thanks are addressed to Frederic Veran for supervising analysis and helpful discussion and to The Agence Universitaire de la Francophonie (AUF) and Vlir-IUC program for their assistance.

References

  1. 1.
    Factfish World Statistics and Data Research.”[Online]. http://www.factfish.com/statistic/grapes%2C production quantity. Accessed 26 May 2018
  2. 2.
    M. Ferri, S. Bin, V. Vallini, F. Fava, E. Michelini, A. Roda, G. Minnucci, G. Bucchi, A. Tassoni, N. Biotechnol. 33, 338–344 (2016)PubMedCrossRefGoogle Scholar
  3. 3.
    V. Lempereur, S. Penavayre, Marcs de raisins, lies de vin et bourbes: Quelle gestion des sous-produits vinicoles? Institut Francais de la Vigne et du Vin, Cahier Itinéraires n °25 (2013)Google Scholar
  4. 4.
    D. Kammerer, A. Claus, R. Carle, A. Schieber, J. Agric. Food Chem. 52, 4360–4367 (2004)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Scalbert, C. Manach, C. Morand, C. Rémésy, L. Jiménez, Crit. Rev. Food Sci. Nutr. 45(4), 287–306 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    K. Amrani Joutei, Y. Glories, Rev. française d’oenologie 35, 28–31 (1995)Google Scholar
  7. 7.
    I. Dávila, E. Robles, I. Egüés, J. Labidi, in Handbook of Grape Processing By-Products: Sustainable Solutions, ed. by C.M. Galanakis, P. Gullón (Elsevier, New York, 2017), pp. 29–53CrossRefGoogle Scholar
  8. 8.
    C. Beye, L.S. Tounkara, M.A. Seck, P. Thonart, P. Fickers, Biotechnol. Agron. Soc. Environ. 19(4), 392–401 (2015)Google Scholar
  9. 9.
    L. Picariello, A. Gambuti, F. Petracca, A. Rinaldi, L. Moio, Int. J. Food Sci. Technol. 53(1), 228–236 (2018)CrossRefGoogle Scholar
  10. 10.
    L. Roumeas, C. Aouf, E. Dubreucq, H. Fulcrand, Green Chem. 15, 3268 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Cosme, J.M. Ricardo-da-Silva, O. Laureano, Food Chem. 112, 197–204 (2009)CrossRefGoogle Scholar
  12. 12.
    I. Keeeey, P.L. Teissedre, Molecules 20, 2190–2207 (2015)CrossRefGoogle Scholar
  13. 13.
    M.C. Figueroa-Espinoza, A. Zafimahova, P.G.M. Alvarado, E. Dubreucq, C. Poncet-Legrand, Food Chem. 178, 38–44 (2015)PubMedCrossRefGoogle Scholar
  14. 14.
    Y. El Rayess, R. Barbar, E.A. Wilson, J. Bouajila, in Wine: Phenolic Composition, Classification and Health Benefits, ed. by El Rayess (Nova Science Publishers, New York, 2014), pp. 71–101Google Scholar
  15. 15.
    J. Hoyos-Arbeláez, M. Vázquez, J. Contreras-Calderón, Food Chem. 221, 1371–1381 (2017)PubMedCrossRefGoogle Scholar
  16. 16.
    O. Makhotkina, P.A. Kilmartin, Anal. Chim. Acta 668, 155–165 (2010)PubMedCrossRefGoogle Scholar
  17. 17.
    M. Ben Aziz, L. Mouls, H. Fulcrand, H. Douieb, H. Hajjaj, LWT-Food Sci. Technol. 78, 143–150 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Mouls, H. Fulcrand, J. Mass Spectrom. 47, 1450–1457 (2012)PubMedCrossRefGoogle Scholar
  19. 19.
    L. Mouls, H. Fulcrand, Tetrahedron 71, 3012–3019 (2015)CrossRefGoogle Scholar
  20. 20.
    F. Cosme, J.M. Ricardo-da-Silva, O. Laureano, Food Chem. 106, 536–544 (2008)CrossRefGoogle Scholar
  21. 21.
    V. Atanasova, H. Fulcrand, V. Cheynier, M. Moutounet, Anal. Chim. Acta 458, 15–27 (2002)CrossRefGoogle Scholar
  22. 22.
    M. Ben Aziz, L. Mouls, H. Fulcrand, H. Hajjaj, J. Food Chem. Nanotechnol. 3, 38–43 (2017)Google Scholar
  23. 23.
    Y. Glories, Connaiss. Vigne Vin. 18, 253–271 (1984)Google Scholar
  24. 24.
    S. Zozio, D. Pallet, M. Dornier, Fruits 66(3), 203–215 (2011)CrossRefGoogle Scholar
  25. 25.
    V.L. Singleton, J.A. Rossi Jr., J.A. Rossi Jr., Am. J. Enol. Vitic. 16, 144–158 (1965)Google Scholar
  26. 26.
    O. Makhotkina, P.A. Kilmartin, J. Electroanal. Chem. 633, 165–174 (2009)CrossRefGoogle Scholar
  27. 27.
    I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)PubMedCrossRefGoogle Scholar
  28. 28.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  29. 29.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT-Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  30. 30.
    B. Labarbe, V. Cheynier, F. Brossaud, J.M. Souquet, M. Moutounet, J. Agric. Food Chem. 47, 2719–2723 (1999)PubMedCrossRefGoogle Scholar
  31. 31.
    M. Monagas, C. Gómez-Cordovés, B. Bartolomé, O. Laureano, J.M.R. Da Silva, J. Agric. Food Chem. 51, 6475–6481 (2003)PubMedCrossRefGoogle Scholar
  32. 32.
    J. Thiomothe, I.A. Bonsi, O.I. Padilla-Zakour, H. Koo, J. Agric. Food Chem. 55(25), 10200–10207 (2007)CrossRefGoogle Scholar
  33. 33.
    J. Cvejić, V. Puškaš, U. Miljić, L. Torović, D. Rakić, Eur. Food Res. Technol. 242(8), 1319–1329 (2016)CrossRefGoogle Scholar
  34. 34.
    G. Spigno, L. Marinoni, G.D. Garrido, in Handbook of Grape Processing By-Products: Sustainable Solutions, ed. by C.M. Galanakis (Elsevier, New York, 2017), pp. 1–27Google Scholar
  35. 35.
    R.L. Hanlin, M.A. Kelm, K.L. Wilkinson, M.O. Downey, J. Agric. Food Chem. 59, 13265–13276 (2011)PubMedCrossRefGoogle Scholar
  36. 36.
    I. Ky, B. Lorrain, N. Kolbas, A. Crozier, P.L. Teissedre, Molecules 19, 482–506 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    J.M. Souquet, V. Cheynier, F. Brossaud, M. Moutounet, Phytochemistry 43, 509–512 (1996)CrossRefGoogle Scholar
  38. 38.
    A. Fontana, A. Antoniolli, M.A. D’AmarioFernández, R. Bottini, RSC Adv. 7, 29446–29457 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Antoniolli, A.R. Fontana, P. Piccoli, R. Bottini, Food Chem. 178, 172–178 (2015)PubMedCrossRefGoogle Scholar
  40. 40.
    T. Lozovskaya, G. Brenner-weiss, M. Franzreb, M. Nusser, Cell. Chem. Technol. 46, 427–433 (2012)Google Scholar
  41. 41.
    J.A.S. Mendes, A.M.R.B. Xavier, D.V. Evtuguin, L.P.C. Lopes, Ind. Crops Prod. 49, 286–291 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Fulcrand, V. Atanasova, E. Salas, V. Cheynier, ACS Symposium Series, vol. 886 (Oxford University Press, Oxford, 2004), pp. 68–88Google Scholar
  43. 43.
    J. Azevedo, N. Teixeira, J. Oliveira, V. de Freitas, N. Mateus, Int. J. Food Sci. Technol. 46(2), 343–349 (2011)CrossRefGoogle Scholar
  44. 44.
    L. Zeng, P.L. Teissèdre, M. Jourdes, Rapid Comm Mass Spectrom. 30(1), 81–88 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohamed Ben Aziz
    • 1
    • 3
    Email author
  • François Garcia
    • 2
  • Laetitia Mouls
    • 2
  • Hélène Fulcrand
    • 2
  • Hassan Hajjaj
    • 1
  1. 1.Laboratory of Plant Biotechnology and Molecular Biology, Faculty of SciencesCluster of Skills “Agribusness and Food Safety” of the University Moulay IsmailMeknesMorocco
  2. 2.SPO, INRA, Montpellier SupAgro, University MontpellierMontpellierFrance
  3. 3.Company Les Celliers de MeknèsMeknesMorocco

Personalised recommendations