Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2032–2040 | Cite as

Kinetics of the changes in bio-active compounds, antioxidant capacity and color of Cornelian cherries dried at different temperatures

  • Hatice Uslu Demir
  • Derya AtalayEmail author
  • Hande Selen Erge
Original Paper


The aim of this research was to determine the effects of oven-drying on degradation of bioactive compounds of Cornelian cherry including total monomeric anthocyanins, total phenolics, total flavonoids and L-ascorbic acid. Changes in antioxidant capacity, percent polymeric color and visual color were also used as quality indicators of Cornelian cherry dried at 50°, 60° and 70 °C for 36, 13.5 and 6 h, respectively. A zero-order kinetic model was obeyed for polymeric color formation. First-order reaction kinetics was found for the degradations of monomeric anthocyanins and L-ascorbic acid, while losses in total phenolics, total flavonoids and antioxidant capacity followed second-order kinetic model. The changes in color parameters also obeyed first-order kinetics. The activation energy for the degradations of bioactive compounds was observed in the range of 48.2–78.7 kJ moL−1. L* parameter with the highest activation energy (200.08 kJ moL−1) was pointed out in this study. Also, a higher sensitivity to temperature for the antioxidant capacity is evidenced by higher activation energy (83.3 kJ moL−1). This study concluded that drying at high temperature (70 °C) with a short time promoted retentions in bioactive compounds.


Cornelian cherry Drying kinetic Anthocyanin Antioxidant capacity L-ascorbic acid 



This work was supported by research Grant No. 2016.09.04.1034 from Scientific Research Projects at Bolu Abant Izzet Baysal University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    T. Koyuncu, I. Tosun, Y. Pinar, J. Food Eng. 78, 735 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Klimenko, J. Fruit Ornam. Plant Res. 12, 93 (2004)Google Scholar
  3. 3.
    M. Güleryüz, I. Bolat, L. Pirlak, Turk. J. Agric. For. 22, 357 (1998)Google Scholar
  4. 4.
    A.Z. Kucharska, A. Szumny, A. Sokól-Letowska, N. Piórecki, S.V. Klymenko, J. Food Compos. Anal. 40, 95 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Celik, I. Bakırcı, I.G. Şat, Int. J. Food Prop. 9, 401 (2006)CrossRefGoogle Scholar
  6. 6.
    K.U. Yilmaz, S. Ercisli, Y. Zengin, M. Sengul, E.Y. Kafkas, Food Chem. 114, 408 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Hassanpour, H. Yousef, H. Jafar, A. Mohammad, Sci. Hortic. (Amsterdam). 129, 459 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Manach, Am. J. Clin. Nutr. 79, 727 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    S. Tural, I. Koca, Sci. Hortic. (Amsterdam). 116, 362 (2008)CrossRefGoogle Scholar
  10. 10.
    M.R. Ochoa, A.G. Kesseler, M.B. Vullioud, J.E. Lozano, LWT - Food Sci. Technol. 32, 149 (1999)CrossRefGoogle Scholar
  11. 11.
    İ. Doymaz, J. Food Eng. 78, 1291 (2007)CrossRefGoogle Scholar
  12. 12.
    N. Djendoubi Mrad, N. Boudhrioua, N. Kechaou, F. Courtois, C. Bonazzi, Food Bioprod. Process. 90, 433 (2012)Google Scholar
  13. 13.
    X. Guo, C. Xia, Y. Tan, L. Chen, J. Ming, J. Integr. Agric. 13, 207 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Orikasa, S. Koide, S. Okamoto, T. Imaizumi, Y. Muramatsu, J. Takeda, T. Shiina, A. Tagawa, J. Food Eng. 125, 51 (2014)CrossRefGoogle Scholar
  15. 15.
    J.C.A. Romero, V.B.D. Yépez, Ultrason. Sonochem. 22, 205 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Zhu, X. Shen, Int. J. Heat Mass Transf. 72, 345 (2014)CrossRefGoogle Scholar
  17. 17.
    E. Demiray, Y. Tulek, Y. Yilmaz, LWT - Food Sci. Technol. 50, 172 (2013)CrossRefGoogle Scholar
  18. 18.
    L.E. Kurozawa, I. Terng, M.D. Hubinger, K.J. Park, J. Food Eng. 123, 157 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Méndez-Lagunas, J. Rodríguez-Ramírez, M. Cruz-Gracida, S. Sandoval-Torres, G. Barriada-Bernal, Food Chem. 230, 174 (2017)CrossRefPubMedGoogle Scholar
  20. 20.
    AOAC, Official Methods of Analysis of the AOAC (AOAC, Washington, DC, 1990)Google Scholar
  21. 21.
    J. Bakker, P. Bridle, C.F. Timberlake, Vitis 25, 67 (1986)Google Scholar
  22. 22.
    G.A.B. Canuto, D.R. Oliveira, L.S.M. da Conceição, J.P.S. Farah, M.F.M. Tavares, Food Chem. 192, 566 (2016)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Giusti, R. Wrolstad, Characterization and Measurement of Anthocyanins by UV–Visible Spectroscopy (Wiley, New York, 2001)CrossRefGoogle Scholar
  24. 24.
    L. Zhang, J. Zhou, H. Liu, M.A. Khan, K. Huang, Z. Gu, Eur. Food Res. Technol. 235, 637 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. Hawkins Byrne, J. Food Compos. Anal. 19, 669 (2006)CrossRefGoogle Scholar
  26. 26.
    V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144 (1965)Google Scholar
  27. 27.
    F. Karadeniz, H.S. Burdurlu, N. Koca, Y. Soyer, J. Agric. For. 29, 297 (2005) (Turkish)Google Scholar
  28. 28.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231 (1999)CrossRefPubMedGoogle Scholar
  29. 29.
    A.A. Abushita, E.A. Hebshi, H.G. Daood, P.A. Biacs, Food Chem. 60, 207 (1997)CrossRefGoogle Scholar
  30. 30.
    M.C. Sánchez-Mata, M. Cámara-Hurtado, C. Díez-Marqués, M.E. Torija-Isasa, Eur. Food Res. Technol. 210, 220 (2000)CrossRefGoogle Scholar
  31. 31.
    T.P. Labuza, J. Chem. Educ. 61, 348 (1984)CrossRefGoogle Scholar
  32. 32.
    A. Kirca, M. Özkan, B. Cemeroǧlu, Food Chem. 97, 598 (2006)CrossRefGoogle Scholar
  33. 33.
    C.P. Kechinski, P.V.R. Guimarães, C.P.Z. Noreña, I.C. Tessaro, L.D.F. Marczak, J. Food Sci. 75, 173 (2010)CrossRefGoogle Scholar
  34. 34.
    M.A. Summen, H.S. Erge, J. Food Process. Preserv. 38, 551 (2014)CrossRefGoogle Scholar
  35. 35.
    U. Garba, S. Kaur, S. Gurumayum, P. Rasane, Food Technol. Biotechnol. 53, 324 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    G. Danişman, E. Arslan, A.K. Toklucu, Czech J. Food Sci. 33, 103 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Türkyilmaz, M. Özkan, Int. J. Food Sci. Technol. 47, 2273 (2012)CrossRefGoogle Scholar
  38. 38.
    C. Brownmiller, L. Howard, R. Prior, J. Food Sci. 73, 72 (2008)CrossRefGoogle Scholar
  39. 39.
    A. Wojdyło, A. Figiel, K. Lech, P. Nowicka, J. Oszmiański, Food Bioprocess Technol. 7, 829 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Uddin, M.N. Hawlader, L. Ding, A. Mujumdar, J. Food Eng. 51, 21 (2002)CrossRefGoogle Scholar
  41. 41.
    R. Yedhu Krishnan, K.S. Rajan, Sep. Purif. Technol. 157, 169 (2016)CrossRefGoogle Scholar
  42. 42.
    L. Zhou, Z. Cao, J. Bi, J. Yi, Q. Chen, X. Wu, M. Zhou, Int. J. Food Sci. Technol. 51, 842 (2016)CrossRefGoogle Scholar
  43. 43.
    N.G. Romdhane, C. Bonazzi, N. Kechaou, N.B. Mihoubi, Dry. Technol. 33, 1581 (2015)CrossRefGoogle Scholar
  44. 44.
    S.M. Demarchi, N.A. Quintero Ruiz, A. Concellón, S.A. Giner, Food Bioprod. Process. 91, 310 (2013)CrossRefGoogle Scholar
  45. 45.
    D. Thi, P. Lien, Int. J. Food Sci. Nutr. 2, 10 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Food Engineering Department, Faculty of EngineeringBolu Abant Izzet Baysal UniversityBoluTurkey

Personalised recommendations