Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2009–2016 | Cite as

Antioxidant activities of tea prepared from kenaf (Hibiscus cannabinus L. KR9) leaves at different maturity stages

  • Kebing Kho
  • Yan Yi Sim
  • Kar Lin NyamEmail author
Original Paper


Kenaf (Hibiscus cannabinus L.) is a fast-growing herbaceous plant that received great attention in Malaysia as a valuable fibre crop. Yet, different maturity of plants’ leaves could affect the antioxidant capacities of the tea prepared. Therefore, the aim of this study was to determine the physical properties of KR9 kenaf leaves and antioxidant activities of tea prepared from KR9 kenaf leaves at four different maturity stages, which were 60, 90, 120 and 150 days after sowing (DAS). The analysis that carried out were DPPH (2-2-diphenyl-1-picrylhydrazyl) radical scavenging assay, ABTS (3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging assay, ferric reducing antioxidant power assay, total phenolic content assay, total flavonoid content assay, and chromatographic analysis of phenolic compounds. Results demonstrated that the kenaf leaves at 150 DAS were able to retain the most colour after drying. It also revealed that the tea prepared from kenaf leaves at 120 DAS showed the highest antioxidant activity in all antioxidant analysis tested. Kenaf leaves tea contained mainly kaempferol, tannic acid, chlorogenic acid, caffeic acid and catechin hydrate. Hence, it was deduced that the antioxidant activity in kenaf leaves increased until 120 DAS and dropped at 150 DAS. There was a strong positive correlation relationship among all the antioxidant analysis and the phenolic compounds presented in the kenaf leaves tea. Thus, the phenolic compounds detected contributed significantly to the antioxidant activities of the kenaf leaves tea. The 120 DAS kenaf leaves was recommended for tea preparation since it possessed high antioxidant activities.


Total phenolic content (TPC) Total flavonoid content (TFC) High performance liquid chromatography (HPLC) Kaempferol Tannic acid Chlorogenic acid 



Financial support of this work by the Ministry of Higher Education through the Fundamental Research Grant Scheme (FRGS/1/2018/WAB01/UCSI/02/1) is gratefully acknowledged.


  1. 1.
    K. Izran, A. Zaidon, A.M.A. Rashid, F. Abood, M.J. Saad, M.Z. Thirmizir, K. Masseat, S. Rahim, Asian J. Appl. Sci. 2(5), 446–455 (2009)Google Scholar
  2. 2.
    S. Zhao, X. Li, D.H. Cho, M.V. Arasu, N.A. Al-Dhabi, S.U. Park, Molecules 19(10), 16987–16997 (2014)PubMedPubMedCentralGoogle Scholar
  3. 3.
    J. Ryu, B. Ha, D. Kim, J. Kim, S. Kim, S. Kang, J. Crop Sci. Biotechnol. 16(4), 297–302 (2013)Google Scholar
  4. 4.
    A. Pascoal, R. Quirantes-Piné, A.L. Fernando, E. Alexopoulou, A. Segura-Carretero, Ind. Crops Prod. 78, 116–123 (2015)Google Scholar
  5. 5.
    M.Y. Masnira, R.A. Halim, M.Y. Rafii, J. Mohd, M.Y. Martini, J. ISSAAS. 21(2), 29–142 (2015)Google Scholar
  6. 6.
    National Kenaf and Tobacco Board, Kenaf Introduction in Malaysia. (LKTN, 2018),
  7. 7.
    Z. Cheng, B.R. Lu, B.S. Baldwin, K. Sameshima, J.K. Chen, Hereditas. 136(3), 231–239 (2002)PubMedGoogle Scholar
  8. 8.
    C. Quispe, E. Viveros-Valdez, G. Schmeda-Hirschmann, Plant Foods Hum. Nutr. 67(3), 242–246 (2012)PubMedGoogle Scholar
  9. 9.
    F. Dian-Nashiela, A. Noriham, H. Nooraain, A.H. Azizah, Int. Food Res. J. 22(3), 1189–1194 (2015)Google Scholar
  10. 10.
    S. Seena, K.R. Sridhar, A.B. Arunb, C.C. Young, J. Food Comp. Anal. 19, 284–293 (2006)Google Scholar
  11. 11.
    K.W. Chan, M. Ismail, Food Chem. 114(3), 970–975 (2009)Google Scholar
  12. 12.
    C.L. Webber III, V.K. Bledsoe, Ind. Crops Prod. 16(2), 81–88 (2002)Google Scholar
  13. 13.
    S.S. Kumar, P. Manoj, N.P. Shetty, P. Giridhar, J. Sci. Food Agric. 95(9), 1812–1820 (2015)PubMedGoogle Scholar
  14. 14.
    K.E. Ileleji, A.A. Garcia, A.R. Kingsly, C.L. Clementson, J. AOAC Int. 93(3), 825–832 (2010)PubMedGoogle Scholar
  15. 15.
    J.J.Y. Tan, Y.Y. Lim, L.F. Siow, J.B.L. Tan, J. Food Process. Preserv. 39(6), 2811–2819 (2015)Google Scholar
  16. 16.
    Q. Meng, H. Fan, Y. Li, L. Zhang, J. Food Meas. Charact. 12(1), 1–10 (2018)Google Scholar
  17. 17.
    C.W. Jin, A.K. Ghimeray, L. Wang, M.L. Xu, J.P. Piao, D.H. Cho, J. Med. Plants Res. 7(17), 1121–1128 (2013)Google Scholar
  18. 18.
    A. Floegel, D.O. Kim, S.J. Chung, S.L. Koo, O.K. Chun, J. Food Compos. Anal. 24(7), 1043–1048 (2011)Google Scholar
  19. 19.
    P.C. Wootton-Beard, A. Moran, L. Ryan, Food Res. Int. 44(1), 217–224 (2011)Google Scholar
  20. 20.
    Y.Y. Lim, T.T. Lim, J.J. Tee, Food Chem. 103(3), 1003–1008 (2007)Google Scholar
  21. 21.
    E. Verzelloni, D. Tagliazucchi, A. Conte, Food Chem. 105(2), 564–571 (2007)Google Scholar
  22. 22.
    Y.H. Wong, H.W. Lau, C.P. Tan, K. Long, K.L. Nyam, Sci. World J. 2014, 789346 (2014)Google Scholar
  23. 23.
    C.L. Webber III, H.L. Bhardwaj, V.K. Bledsoe, Trends in New Crops and New Uses (ASHS Press, Alexandria, 2002), pp. 327–339Google Scholar
  24. 24.
    T. Yamamoto, L. Juneja, S. Chu, M. Kim, Chemistry and Applications of Green Tea (CRC Press, Boca Raton, 1997), p. 6Google Scholar
  25. 25.
    A. Karim, C. Law, Intermittent and Nonstationary Drying Technologies (CRC Press, Boca Raton, 2017), p. 76Google Scholar
  26. 26.
    R. Arias, T.C. Lee, L. Logendra, H. Janes, J. Agric. Food Chem. 48(5), 1697–1702 (2000)PubMedGoogle Scholar
  27. 27.
    M. Zhang, N.S. Hettiarachchy, R. Horax, P. Chen, K.F. Over, J. Food Sci. 74(6), 441–448 (2009)Google Scholar
  28. 28.
    M. Youssef, M. Mokhtar, J. Nutr. Food Sci. 4(6), 309 (2014)Google Scholar
  29. 29.
    M. Braga, E. Vieira, T. de Oliveira, Food Chem. 265, 308–315 (2018)PubMedGoogle Scholar
  30. 30.
    L. Zhou, Y. Wang, X. Hu, J. Wu, X. Liao, Innov. Food Sci. Emerg. Technol. 10(3), 321–327 (2009)Google Scholar
  31. 31.
    D.B. Rodriguez-Amaya, Forum Nutr. 56, 35–37 (2003)PubMedGoogle Scholar
  32. 32.
    A. Bahtoee, K. Zargari, E. Baniani, World Appl. Sci. J. 16(1), 63–66 (2012)Google Scholar
  33. 33.
    F.M. Oloyede, F.A. Oloyede, E.M. Obuotor, Bull. Environ. Pharmacol. Life Sci. 2(2), 18–21 (2013)Google Scholar
  34. 34.
    P.E.T.R.A. Zimmermann, U.L.R.I.K.E. Zentgraf, Cell. Mol. Biol. Lett. 10(3), 515–534 (2005)PubMedGoogle Scholar
  35. 35.
    R. Farhoosh, G.A. Golmovahhed, M.H. Khodaparast, Food Chem. 100(1), 231–236 (2007)Google Scholar
  36. 36.
    C.W. Jin, S.H. Eom, H.J. Park, A.K. Ghimeray, C.Y. Yu, D.H. Cho, Korean J. Med. Crop Sci. 17(1), 21–25 (2009)Google Scholar
  37. 37.
    V. Khader, S. Rama, Korean J. Med. Crop Sci. 17(1), 21–25 (1998)Google Scholar
  38. 38.
    J. Ryu, S.J. Kwon, J.W. Ahn, Y.D. Jo, S.H. Kim, S.W. Jeong, M.K. Lee, J.B. Kim, S.Y. Kang, J. Plant Biotechnol. 44(2), 191–202 (2017)Google Scholar
  39. 39.
    Y.H. Wong, J.S. Beh, C.P. Tan, K. Long, K.L. Nyam, Free Radic. Antioxid. 4(2), 8–12 (2014)Google Scholar
  40. 40.
    M.F.A. Bakar, M. Mohamed, A. Rahmat, J. Fry, Food Chem. 113(2), 479–483 (2009)Google Scholar
  41. 41.
    J.J. Ling, D. Maryati Mohamed, A. Rahmat, M.F.A. Bakar, J. Med. Plant Res. 4(1), 27–32 (2010)Google Scholar
  42. 42.
    V. Katalinic, M. Milos, T. Kulisic, M. Jukic, Food Chem. 94(4), 550–557 (2006)Google Scholar
  43. 43.
    C.C. Wong, M.M. Daham, O. Abdullah, J. Trop. Agric. Food. Sci. 36(1), 21–28 (2008)Google Scholar
  44. 44.
    S. Dudonné, X. Vitrac, P. Coutiere, M. Woillez, J.M. Mérillon, J. Agric. Food Chem. 57(5), 1768–1774 (2009)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Nutrition, Faculty of Applied SciencesUCSI UniversityKuala LumpurMalaysia

Personalised recommendations