Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2000–2008 | Cite as

Mucilage of spineless cactus in the composition of an edible coating for minimally processed yam (Dioscorea spp.)

  • Maria Aparecida dos Santos Morais
  • Kelem Silva Fonseca
  • Ellen Karine Diniz Viégas
  • Samara Lopes de Almeida
  • Rúbia Kécia Marins Maia
  • Valécia Nogueira Santos Silva
  • Adriano do Nascimento SimõesEmail author
Original Paper

Abstract

The objective of this study was to examine formulations of edible coatings based on spineless-cactus mucilage for the preservation of minimally processed yam. Cladodes of spineless cactus clone IPA-Sertânia were harvested, washed, sanitized, and subjected to mucilage extraction to be used as an edible coating. Yam roots were minimally processed and immersed into the following coating suspensions: cactus mucilage + cassava starch (3%) + glycerol (1%) or cactus mucilage solely. Control corresponded to immersion in water. Samples were dried, packed and stored at 5 ± 2 °C for 10 days. The biocoating containing cactus mucilage reduced dehydration and maintained the visual and sensory quality of the yam slices. Additionally, this hydrocolloid increased the amount of phenolic compounds and led to different responses between polyphenol oxidase and peroxidase. Therefore, the studied formulations containing cactus mucilage show to be promising for the composition of biofilms and application to minimally processed yam roots.

Keywords

Nopalea cochenillifera L. Salm-Dyck Dioscorea spp. Edible coating Polyphenol oxidase 

Notes

Acknowledgements

The authors gratefully acknowledge the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), for funding the research project (APQ-0795-5.01/16) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Proc. 88881-159183/2017-01.

References

  1. 1.
    F. Artéz, A. Allende, Minimal processing of fresh fruit, vegetables, and juices. Emerg. Technol. Food Process. (2014).  https://doi.org/10.1016/B978-0-12-411479-1.00031-0 CrossRefGoogle Scholar
  2. 2.
    K.S. Fonseca, D.G. Coelho, A.E.D. Sousa, D.F. Mélo-Neto, F.A.L. Brito, R.M. Silva, A.N. Simões, Baby Cassava: An Alternative Marketing Strategy for Freshly Cut Cassava in Cassava, ed. by V. Waisundara (Intech, Sri Lanka, 2018), p. 185Google Scholar
  3. 3.
    A.N. Simões, J.A. Tudela, A. Allende, R. Puschmann, M.I. Gil, Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biol. Technol. (2009).  https://doi.org/10.1016/j.postharvbio.2008.08.012 CrossRefGoogle Scholar
  4. 4.
    L. Cisneros-Zevallos, M.E. Saltveit, J.M. Krochta, Mechanism of surface white discoloration of peeled (minimally processed) carrots during storage. J. Food Sci. 60, 320–323 (1995)CrossRefGoogle Scholar
  5. 5.
    M.A. Donegá, M.A. Tessmer, E.D. Mooz, L.T.C. Dall’orto, F.F.C. Sasaki, R.A. Kluge, Fresh cut yam stored under different temperatures. Hortic Bras. (2013).  https://doi.org/10.1590/S0102-05362013000200012(2013) CrossRefGoogle Scholar
  6. 6.
    D.G. Coelho, M.T. Andrade, D.F. Mélo-Neto, S.L. Ferreira-Silva, A.N. Simões, Application of antioxidants and an edible starch coating to reduce browning of minimally-processed cassava. Rev Caatinga (2017).  https://doi.org/10.1590/1983-21252017v30n226rc CrossRefGoogle Scholar
  7. 7.
    A. Ali, S. Ahmed, Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J. Agric. Food Chem. (2018).  https://doi.org/10.1021/acs.jafc.8b01052 CrossRefPubMedGoogle Scholar
  8. 8.
    A. Nawab, F. Alam, A. Hasnaim, Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. Int. J. Biol. Macromol. (2017).  https://doi.org/10.1016/j.ijbiomac.2017.05.057 CrossRefPubMedGoogle Scholar
  9. 9.
    S.M.B. Hashemi, A.M. Khaneghah, M.G. Ghahfarrokhi, I. Es, Basil-seed gum containing Origanum vulgare subsp. Viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Technol. (2017).  https://doi.org/10.1016/j.postharvbio.2016.11.003 CrossRefGoogle Scholar
  10. 10.
    S.B. Murmu, H.N. Mishra, The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chem. (2018).  https://doi.org/10.1016/j.foodchem.2017.11.104 CrossRefPubMedGoogle Scholar
  11. 11.
    B. Yousuf, A.K. Srivastava, Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int. J. Biol. Macromol. (2017).  https://doi.org/10.1016/j.ijbiomac.2017.07.025 CrossRefPubMedGoogle Scholar
  12. 12.
    A. Allegra, P. Inglese, G. Sortino, L. Settanni, A. Todaro, G. Liguori, The influence of Opuntia fícus-indica mucilage edible coating on the quality of ‘Hayward’ kiwifruit slices. Postharvest Biol. Technol. (2016).  https://doi.org/10.1016/j.postharvbio.2016.05.011 CrossRefGoogle Scholar
  13. 13.
    V. Del-Valle, P. Hernández-Munõz, A. Guarda, M.J. Galotto, Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extendstrawberry (Fragaria ananassa) shelf-life. Food Chem. (2005).  https://doi.org/10.1016/j.foodchem.2004.07.002 CrossRefGoogle Scholar
  14. 14.
    M. Contreras-Padilha, M.E. Rodríguez-García, E. Gutiérrez-Cortez, M.C. Valderrama-Bravo, J.I. Rojas-Molina, E.M. Rivera-Munoz, Physicochemical and rheological characterization of Opuntia fícus mucilage at three diferente maturity stages of cladode. Eur Polym J (2016).  https://doi.org/10.1016/j.eurpolymj.2016.03.024 CrossRefGoogle Scholar
  15. 15.
    L. Medina-Torres, B.L. Fluente, B. Torrestiana-Sanchez, R. Katthain, Rheological properties of the mucilage gum (Opuntia Ficus indica). Food Hydrocoll (2000).  https://doi.org/10.1016/S0268-005X(00)00015-1 CrossRefGoogle Scholar
  16. 16.
    R. Gheribi, L. Puchot, P. Verge, N. Jaoued-Grayaa, M. Mohamed, Y. Habibi, K. Khaoula, Development of plasticized edible films from Opuntia fícus-indica mucilage: a comparative study of various. Carbohydr. Polym. (2018).  https://doi.org/10.1016/j.carbpol.2018.02.085 CrossRefPubMedGoogle Scholar
  17. 17.
    M.R. Bhandari, T. Kasai, J. Kawabata, Nutritional evaluation of wild yam (Dioscorea spp.) tubers of Nepal. Food Chem. (2003).  https://doi.org/10.1016/S0308-8146(03)00019-0 CrossRefGoogle Scholar
  18. 18.
    O.T. Adepoju, O. Boyejo, P.O. Adeniji, Effects of processing methods on nutrient and antinutrient composition of yellow (Dioscorea cayenensis) products. Food Chem. (2018).  https://doi.org/10.1016/j.foodchem.2016.10.071 CrossRefPubMedGoogle Scholar
  19. 19.
    L.F. Coelho-Júnior, S.L. Ferreira-Silva, M.R.S. Vieira, M.A.G. Carnelossi, A.N. Simões, Darkening, damage and oxidative protection are stimulated in tissues closer to the yam cut, attenuated or not by the environment. J. Sci. Food Agric. (2018).  https://doi.org/10.1002/jsfa.9192 CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Feng, M. O’Mahony, Comparison between American and Chinese consumers in the use of verbal and numerical 9-point hedonic scales and R-Index ranking for food and personal products. Food Qual. Prefer. (2017).  https://doi.org/10.1016/j.foodqual.2017.04.004 CrossRefGoogle Scholar
  21. 21.
    V.L. Singleton, A.J. Rossi, Colorometry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144–158 (1965)Google Scholar
  22. 22.
    A.N. Simões, S.I. Moreira, P.R. Mosquim, N.D.F.F. Soares, R. Puschmann, The effects of storage temperature on the quality and phenolic metabolism of whole and minimally processed kale leaves. Acta Sci Agron (2015).  https://doi.org/10.4025/actasciagron.v37i1.18123 CrossRefGoogle Scholar
  23. 23.
    L.S. Nunes, M.E.M. Duarte, M.E.R.M.M. Mata, Avaliação do comportamento higroscópico de amido de inhame. Rev Bras Prod Agroind 11, 149–158 (2009)Google Scholar
  24. 24.
    A.E.C. Fai, M.R.A. de Souza, N.V. Bruno, E.C.B.A. Gonçalves, Produção de revestimento comestível à base de resíduo de frutas e hortaliças: aplicação em cenoura (Daucus carota L.) minimamente processada. Sci Agropecu (2015).  https://doi.org/10.17268/sci.agropecu.2015.01.06 CrossRefGoogle Scholar
  25. 25.
    G.V. Civille, K.N. Oftedal, Sensory evaluation techniques—make “good for uou” taste “good”. Physiol. Behav. (2012).  https://doi.org/10.1016/j.physbeh.2012.04.015 CrossRefPubMedGoogle Scholar
  26. 26.
    L.F. Reyes, J.E. Villarreal, L. Cisneros-Zevallos, The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem. (2007).  https://doi.org/10.1016/j.foodchem.2006.03.032 CrossRefPubMedGoogle Scholar
  27. 27.
    R.A. Dixon, N.L. Paiva, Stress-induced phenylpropanoid metabolism. Plant Cell (1995).  https://doi.org/10.1105/tpc.7.7.1085 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Y.-J. Choi, F.A. Tomás-Barberán, M.E. Saltveit, Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols. Postharvest Biol Tecnol (2005).  https://doi.org/10.1016/j.postharvbio.2005.03.002 CrossRefGoogle Scholar
  29. 29.
    L. Cisneros-Zevallos, D.A. Jacobo-Velázquez, J.-C. Pech, H. Koiwa, in Handbook of Plant Crop Physiology, ed. by M. Pessarakli (CRC Press, Boca Raton, 2014), p. 259Google Scholar
  30. 30.
    I. Lamia, C. Zouhir, A. Youcef, Characterization and transformation of the Opuntia fícus indica fruits. J. Food Meas. Charact. (2018).  https://doi.org/10.1007/s11694-018-9851-z CrossRefGoogle Scholar
  31. 31.
    C.G. Fraga, K.D. Croft, D.O. Kennedye, F.A. Tomás-Barberán, The effects of polyphenols and other bioactives on human health. Food Funct (2019).  https://doi.org/10.1039/c8fo01997e CrossRefPubMedGoogle Scholar
  32. 32.
    F.A. Tomás-Barberán, J.C. Espín, Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. (2001).  https://doi.org/10.1002/jsfa.885 CrossRefGoogle Scholar
  33. 33.
    J.R. Whitaker, C.Y. Lee, in Enzymatic Browning and Its Prevention, ed. by C.Y. Lee, J.R. Whitaker (Washington, DC: American Chemical Society, 1995), p. 1Google Scholar
  34. 34.
    K. Duangmal, R.K.O.A. Apenten, Comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chem. (1999).  https://doi.org/10.1016/S0308-8146(98)00127-7 CrossRefGoogle Scholar
  35. 35.
    J.-H. Jang, K.-D. Moon, Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid. Food Chem. (2011).  https://doi.org/10.1016/j.foodchem.2010.06.052 CrossRefPubMedGoogle Scholar
  36. 36.
    F. Minibayeva, R.P. Beckett, I. Kranner, Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry (2015).  https://doi.org/10.1016/j.phytochem.2014.06.008 CrossRefPubMedGoogle Scholar
  37. 37.
    P. Yingsanga, V. Srilaong, S. Kanlayanarat, S. Noichinda, W.B. Mcglasson, Relationship between browning and related enzymes (PAL, PPO and POD). Postharvest Biol. Technol. (2008).  https://doi.org/10.1016/j.postharvbio.2008.05.004 CrossRefGoogle Scholar
  38. 38.
    C. Mozzetti, L. Ferraris, G. Tamietti, A. Matta, Variation in enzyme activities in leaves and cell suspensions as markers of incompatibility in different Phytophthora–pepper interactions. Physiol. Mol. Plant Pathol. (1995).  https://doi.org/10.1006/pmpp.1995.1008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria Aparecida dos Santos Morais
    • 1
  • Kelem Silva Fonseca
    • 1
  • Ellen Karine Diniz Viégas
    • 1
  • Samara Lopes de Almeida
    • 1
  • Rúbia Kécia Marins Maia
    • 1
  • Valécia Nogueira Santos Silva
    • 2
  • Adriano do Nascimento Simões
    • 1
    Email author
  1. 1.Federal Rural University of Pernambuco - UFRPESerra TalhadaBrazil
  2. 2.Federal Rural University of the SemiArid – UFERSAMossoróBrazil

Personalised recommendations