Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1924–1934 | Cite as

Determination of phytochemical properties of dried onion slices (Allium cepa L. var. Violet of galmi)

  • Dimitry Yannick MangEmail author
  • Djiogue Manejo Josiane Edith
  • Armand Bouba Abdou
  • Nicolas Yanou Njintang
Original Paper


The high water content in fresh onion bulb make it difficult to preserve. In order to remedy these situation, it can be converted into dried slices. The objective of this work was to optimize the phenolic compounds and antioxidant properties of dried onion slice. Box Behnken design was performed to determine the effect of drying temperature (25–45 °C), water activity (0.2–0.6) and drying time (12–24 h) on the moisture content, total phenolic, flavonoids content, DPPH free radical scavenging and total reducing power on dried onion slice. Desirability was fixed to obtain the best possible combination of factors to a maximum values of total phenolic and flavonoids content, DPPH free radical scavenging, total reducing power and a low level of moisture content. Data analysis showed that the factors significantly (p < 0.05) affected the responses variables. Desirability function showed that the optimal dry conditions were 20 h for drying time, drying temperature of 28 °C and water activity of 0.48. At this optimum point the moisture content, polyphenol and flavonoids content, DPPH free radical scavenging and total reducing power were respectively: 9.53%, 1060.45 mg gallic acid/100 g DM; 342.61 mg quercetin/100 g DM; 52.18 mg Trolox/100 g DM and 78.14 mg Vitamin C/100 g DM. In this overall optimum point desirability was 0.9. No significant difference (p < 0.05) was found between the experimental and predicted values of the response variables at optimum point.


Onion (Allium cepa L.) Drying Optimization Antioxidant properties 



Part of this study was carried out within the team TQ2A (Technologie, qualité, innovations agro-alimentaires). In this respect we are grateful to the financial support of AIRD. The authors also declared no conflict of interest.


  1. 1.
    Rodriguez, Nutritional value of onion, regional varieties in northwest Portugal. J. Chem. 2(4), 519–524 (2003)Google Scholar
  2. 2.
    M. Ali, M. Thomson, M. Afzal, Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance. Prostaglandins Leukot. Essent. Fatty Acids 62(2), 55–73 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    N.K. Gabler, E. Osrowska, Dietary onion intake as part of a typical high fat diet improves indices of cardiovascular health using the mixed sex pig model. Plant Foods Human Nutr. 61(4), 179–185 (2006)CrossRefGoogle Scholar
  4. 4.
    J.V. Formica, W. Regelson, Review of biology of quercetin and related bioflavonoïds. J. Food Chem. 33, 1061–1080 (1995)CrossRefGoogle Scholar
  5. 5.
    E. Ostrowska, N.K. Gabler, S.J. Sterling, B.G. Tatham, R.B. Jones, D.R. Eagling, Consumption of brown onions (Allium caepa var. Cavalier and var.Destiny) moderately modulates blood lipids, haematological and haemostatic variables in healthy pigs. British J. Nutr. 91, 211–218 (2004)CrossRefGoogle Scholar
  6. 6.
    T.J. Arif, R.K. Majid, M. Imtiyaz, B.S. Jang, A. Arif, Q.M.R. Haq, Dietary flavonoïd quercetine and associated health beneficts-an overview. Foods Rev. Int. 26, 302–317 (2010)CrossRefGoogle Scholar
  7. 7.
    A.B. Abdou, T. Vroumsia, G.B. Nkouam, Y.N. Njintang, Y.D. Mang, M. Didier, J. Scher, C.M.F. Mbofung, Effet of solar and electric drying on the content of the phenolic compounds and antixoidant activity of three varieties of onion (Allium cepa L). Int. J. Biol. Phar. Allied Sci. 1(3), 204–220 (2012)Google Scholar
  8. 8.
    A.B. Abdou, Y.N. Njintang, G.B. Nkouam, Y.D. Mang, J. Scher, D. Montet, C.M.F. Mbofung, Moisture desorption isotherms and theinteraction effect of drying temperature and water activity on the antioxidant activity of two varieties ofonion (Allium cepa L). Int. J. Food Sci. Technol. 49(3), 444–452 (2014)Google Scholar
  9. 9.
    V. Okatan, Phenolic compounds and phytochemicals in fruits of black mulberry (Morus nigra L.) genotypes from the Aegean region in Turkey. Folia Hortic. 30(1), 93–101 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Usanmaz, F. Öztürkler, M. Helvaci, T. Alas, I. Kahramanoğlu, M. Aşkin, Effects of periods and altitudes on the phenolic compounds and oil contents of olives, cv. ayvalik. Int. J. Agric. For. Life Sci. 2(2), 32–39 (2018)Google Scholar
  11. 11.
    Minader, Annuaire des Statistiques du Secteur Agricole Campagnes 2016 et 2017, (2017)Google Scholar
  12. 12.
    AOAC, Official methods of analysis, 1st edn. (Association of Official Analytical Chemists, Gaithersburg, Maryland, 2003)Google Scholar
  13. 13.
    X. Gao, M. Ohlander, N. Jeppsson, L. Björk, V. Trajkovski, Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 48, 1485–1490 (2000) (2000)CrossRefPubMedGoogle Scholar
  14. 14.
    N. Mimica-Dukic, G. Kite, O. Gasic, D. Stanjer, R.R. Pavkov, L. JancicFellows, Comparative study of volatile constituents and antimicrobial activity of mentha species. Acta Hortic. 344, 110–115 (1993)CrossRefGoogle Scholar
  15. 15.
    P.D. Duh, G.C. Yen, Antioxidative activity of three herbal water extracts. Food Chem. 60, 639–645 (1997)CrossRefGoogle Scholar
  16. 16.
    Y. Okada, M. Okada, Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species. J. Agric. Food Chem. 46, 401–406 (1998)CrossRefPubMedGoogle Scholar
  17. 17.
    Y.D. Mang, B.A. Abdou, Y.N. Njintang, A.E. Panyo, B. Clemence, R. Ndjouenkeu, C.M.F. Mbofung, Optimization of vegetable milk extraction from whole and dehulled Mucuna pruriens (Var Cochinchinensis) flours using central composite design. J. Food Sci. Technol. 56(1), 145–157 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Ayub, W. Said, D. Yasser, Effect of water activity (Aw) moisture content and total microbial count on the Overall Quality of bread. Int. J. Agric. Biol. 5(3), 274–278 (2003)Google Scholar
  19. 19.
    T.P. Labuza, M. Sorption, Practical Aspects of Isotherm Measurement and Use (American Association of Cereal Chemists, St. Paul, MN, 1984)Google Scholar
  20. 20.
    G.O. Ondier, J.S. Terry, M. Andronikos, Low-temperature, low-relative humidity drying of rough rice. J. Food Eng. 100, 545–550 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Kacar, S. Avunduk, B. Omuzbuken, E. Aykin, Biocidal activities of a triterpenoid saponin and flavonoid extracts from the erica manipuliflora salisb. against microfouling bacteria. Int. J. Agric. For. Life Sci. 2(2), 40–46 (2018)Google Scholar
  22. 22.
    O. Antia, G. Vlasios, G. Vassilis, Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci. 31(5), 509–513 (2013)CrossRefGoogle Scholar
  23. 23.
    E.W.C. Chan, P.Y. Lye, S.Y. Eng, Y.P. Tan, Antioxidant properties of herbs with enhancement effects of drying treatments: a synopsis. Free Radic. Antiox 3(1), 2–6 (2013)CrossRefGoogle Scholar
  24. 24.
    V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(1), 3010–3014 (2002)CrossRefPubMedGoogle Scholar
  25. 25.
    A. Malla, B. Janakiraman, B. Srinivasan, B.M. Shanmugaraj, S. Ramalingam, Antioxidant activity in in vivo and in vitro cultures of onion varieties (bellary and CO3). Food Nutr. Sci. 4, 918–923 (2013)Google Scholar
  26. 26.
    B. Noureddine, Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and Garlic (Allium sativum L.) Extracts. Braz. Arch. Biol. Technol. 48(5), 753–759 (2005)CrossRefGoogle Scholar
  27. 27.
    A.M. Nuutila, P.P. Riitta, A. Marjukka, Kirsi-Marja, Oksman-caldentey, comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 81, 485–493 (2003)CrossRefGoogle Scholar
  28. 28.
    J.Y. Kim, M.J. Kim, B. Yi, S. Oh, J. Lee, Effects of relative humidity on the antioxidant properties of α-tocopherol in stripped corn oil. Food Chem. 15(167), 191–196 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Youngjae, R.H. Liu, J.F. Nock, D. Holiday, C.B. Watkins, Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol. Technol. 45(3), 349–357 (2007)CrossRefGoogle Scholar
  30. 30.
    C. Mayer, T. Dhuique-Manal, C. Michel, C. Caris-Veyrat, D. Manuel, D.J.M. Amiot, Thermal degradation of antioxidant micronutrients in Citrus juice: kinetics and newly formeds compounds. J. Agric. Food Chem. 55(10), 4209–4216 (2007)CrossRefGoogle Scholar
  31. 31.
    C.T. Kiranoudis, Z.B. Maroulis, E. Tsami, K. Marinous, Equilibrium moisture content and heat of desorption of some vegetables. J. Food Eng. 20, 55–74 (1993)CrossRefGoogle Scholar
  32. 32.
    H.C. Pacco, C. Vigneault, F.C. Menegalli, L.R. de Castro, L.A.B. Cortez, Evaluation of sorption isotherm models for figs. Can. Biosys. Eng. 50(3), 77–83 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dimitry Yannick Mang
    • 1
    • 2
    Email author
  • Djiogue Manejo Josiane Edith
    • 2
  • Armand Bouba Abdou
    • 1
    • 2
  • Nicolas Yanou Njintang
    • 2
    • 3
  1. 1.Department of Agriculture, Livestock and By ProductsHigher National Polytechnic School of Maroua, University of MarouaMarouaCameroon
  2. 2.Department of Food Science and NutritionENSSAI, University of NgaoundereNgaoundereCameroon
  3. 3.Department of Biological Sciences, Faculty of ScienceUniversity of NgaoundereNgaoundereCameroon

Personalised recommendations