Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1884–1897 | Cite as

Effect of Agaricus bisporus polysaccharide flour and inulin on the antioxidant and structural properties of gluten-free breads

  • Abdellatief A. SuliemanEmail author
  • Ke-Xue Zhu
  • Wei Peng
  • Hayat A. Hassan
  • Mohammed Obadi
  • Mohamed I. Ahmed
  • Hui-Ming ZhouEmail author
Original Paper


Enrichment of gluten-free bread (GFB) with mushroom polysaccharide and prebiotic is necessary to enhance its organoleptic and health attributes. This work investigated the enrichment effect of the GFB with Agaricus bisporus polysaccharide (ABP) flour and inulin. Volatile compounds, as well as the antioxidant and structural properties of the fortified GFB were evaluated. Sweet potato-glutinous rice flour was fortified with ABP flour and the same with inulin at different levels (3, 6 and 9%), besides a constant percentage of xanthan gum (0.5%) was added to all the blends. Addition of ABP flour resulted in higher levels of volatile compounds compared to inulin addition and the control. ABP flour formulation (F3) had the highest total phenolic content (19.05 mg GAE/g), reducing power (5.31 mg/mL, EC50 value), DPPH (6.85 mg/mL, EC50 value), ABTS (8.86 mg/mL, EC50 value) radical-scavenging activities, and β-carotene bleaching (13.22 mg/mL, EC50 value). Conversely, the control and inulin formulation (F1) showed the lowest levels of these activities. The micrographs of the ABP flour formulations showed polyhedral, aggregated, and some spherical granules, whereas inulin formulations revealed spherical granules bound together with deformed granules. FTIR spectroscopy confirmed the presence of the amide I band and both α- and β-glycosidic linkages. The current findings exhibited that ABP flour and inulin had good attributes to improve the antioxidant activity of GFB and modify its structural characteristics.


Gluten-free bread Antioxidant activity Volatile compounds Mushroom polysaccharide flour SEM FTIR spectroscopy 



We would like to thank all co-authors to their contributions in this research, in addition to the staff and students of the Research Center of Convenient Food and Quality Control, especially Dr. Jin-Rong Wang for her valuable assistance. This research was funded by Ministry of Education of the People’s Republic of China (Grant No. 214122).


  1. 1.
    M. Pacynski, R.Z. Wojtasiak, S. Mildner-Szkudlarz, LWT-Food Sci. Technol. 63, 706–713 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Regula, Z. Kędzior, in Gluten-Free bread: health and technological aspects, ed. by ed., by C.M. Rosell, J. Bajerska, A.F. El, Sheikha (Science Publishers, Inc., CRC Press, New Hampshire, 2015), pp. 373–403,
  3. 3.
    C.M. Rosell, R. Garzon, in Chemical composition of bakery products, ed. by ed., by P. Cheung, B. Mehta (Handbook of Food Chemistry. Springer-Verlag, Berlin, Heidelberg, 2015), pp. 1–28, Google Scholar
  4. 4.
    C. Collar, in Role of bread on nutrition and health worldwide, ed. by ed., by C.M. Rosell, J. Bajerska, A.F. El, Sheikha (Science Publishers, Inc., CRC Press, New Hampshire, 2015), pp. 26–52,
  5. 5.
    I. Aprodu, I. Banu, Food Sci. Biotechnol. 24(4), 1301–1307 (2015)CrossRefGoogle Scholar
  6. 6.
    U. Krupa, C.M. Rosell, J. Sadowska, M. Soral-Smietana, J. Food Process. Preserv. 34, 501–518 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Rubio-Tapia, J.F. Ludvigsson, T.L. Brantner, J.A. Murray, J.E. Everhart, Am. J. Gastroenterol. 107, 1538–1544 (2012). CrossRefGoogle Scholar
  8. 8.
    Y.A. Ramesh, Rheological and functional properties of potato and sweet potato flour and evaluation of its application in some selected food products, 570020 (Central Food Technological Research Institute, Mysore, 2005) IndiaGoogle Scholar
  9. 9.
    M. Kozarski, A. Klaus, M. Niksic, M.M. Vrvic, N. Todorovic, D. Jakovljevic, L.J.L.D. Van Griensven, J. Food Compos. Anal. 26(1–2), 144–153 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Ghahremani-Majd, F. Dashti, Horticul Environ. Biotechnol. 56, 376–382 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Shoaib, A. Shehzad, M. Omar, A. Rakha, H. Raza, H.R. Sharif, A. Shakeel, A. Ansari, S. Niazi, Carbohydr. Polym. 147, 444–454 (2016)CrossRefGoogle Scholar
  12. 12.
    A.F. El Sheikha, R.C. Ray, Crit Rev. Food Sci. Nutr. 57(3), 455–471 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Patel, A. Goyal, 3 Biotech. 2, 1–15 (2012)Google Scholar
  14. 14.
    K.-L. Lam, P.C.-K. Cheung, Bioact. Carbohydr. Diet Fiber. 2, 45–64 (2013)CrossRefGoogle Scholar
  15. 15.
    S.-Y. Tsai, S.-J. Huang, S.-H. Lo, T.-P. Wu, P.-Y. Lian, J.-L. Mau, Food Chem. 113, 578–584 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Liu, L. Jia, J. Kan, C.-h. Jin. Food Chem. Toxicol. 51, 310–316 (2013)CrossRefGoogle Scholar
  17. 17.
    D. Meyer, M. Stasse-Wolthuis, Eur. J. Clin. Nutr. 63(11), 1277–1289 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Fan, S. Zhang, L. Yu, L. Ma, Food Chem. 101, 1158–1163 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Kozarski, A. Klaus, M. Niksic, D. Jakovljevic, J.P.F.G. Helsper, L.J.L.D. Van Griensven, Food Chem 129, 1667–1675 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Korus, M. Witczak, R. Ziobro, L. Juszczak, Food Hydrocoll. 23(3), 988–995 (2009)CrossRefGoogle Scholar
  21. 21.
    M.H.B. Nunes, L.A.M. Ryan, E.K. Arendt, Eur. Food Res. Technol. 229, 31–41 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Huang, P. Liu, S. Song, X. Zhang, K. Hayat, S. Xia, C. Jia, F. Gu, J. Sci. Food Agric. 91, 710–720 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Aponte, F. Boscaino, A. Sorrentino, R. Coppola, P. Masi, A. Romano, Food Chem. 141, 2394–2404 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Goncalves, E. Moreira, C. Grosso, P.B. Andrade, P. Valentao, A. Romano, J. Food Sci. Technol. 54(1), 219–227 (2017)CrossRefGoogle Scholar
  25. 25.
    F.S. Reis, A. Martins, L. Barros, I.C.F.R. Ferreira, Food Chem. Toxicol. 50(5), 1201–1207 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, J. Agric. Food Chem. 40(6), 945–948 (1992)CrossRefGoogle Scholar
  27. 27.
    F. Kong, S. Yu, F. Zeng, X. Wu, J. Food Nutr. Res. 3(7), 458–463 (2015)CrossRefGoogle Scholar
  28. 28.
    S.A. Heleno, L. Barros, M.J. Sousa, A. Martins, I.C.F.R. Ferreira, Microchem. J. 93(2), 195–199 (2009)CrossRefGoogle Scholar
  29. 29.
    Y. Chen, R. Ye, L. Yin, N. Zhang, J. Food Eng. 120, 1–8 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Jouraiphy, S. Amir, P. Winterton, M.El Gharous, J.-C. Revel, M. Hafidi, Bioresour. Technol. 99(5), 1066–1072 (2008)CrossRefGoogle Scholar
  31. 31.
    F.R. Smiderle, A.C. Ruthes, J. van Arkel, W. Chanput, M. Iacomini, H.J. Wichers, L.J.L.D. Van Griensven, BMC Compl. Altern. Med. 11, 58 (2011)CrossRefGoogle Scholar
  32. 32.
    J.-Z. He, Q.-M. Ru, D.-D. Dong, P.-L. Sun, Molecules 17, 4373–4387 (2012)CrossRefGoogle Scholar
  33. 33.
    L.Y. Lin, Y.-H. Tseng, R.-C. Li, J.-L. Mau, J. Food Process. Preserv. 32, 1002–1015 (2008)CrossRefGoogle Scholar
  34. 34.
    A. Gupta, S. Sharma, S. Saha, S. Walia, Food Chem. 141, 4231–4239 (2013)CrossRefGoogle Scholar
  35. 35.
    E. Ulziijargal, J.-H. Yang, L.-Y. Lin, C.-P. Chen, J.-L. Mau, Food Chem. 138, 70–76 (2013)CrossRefGoogle Scholar
  36. 36.
    M.A. Fraatz, H. Zorn, in Fungal flavours, ed. by ed., by M. Hofrichter. (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 249–268, Google Scholar
  37. 37.
    P. Poinot, G. Arvisenet, J. Grua-Priol, C. Fillonneau, A. Le-Bail, C. Prost, Food Chem. 119, 1474–1484 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Paraskevopoulou, A. Chrysanthou, M. Koutidou, Food Res. Int. 48, 568–577 (2012)CrossRefGoogle Scholar
  39. 39.
    L.K. Jagadish, V.V. Krishnan, R. Shenbhagaraman, V. Kaviyarasan, Afr. J. Biotechnol. 8(4), 654–661 (2009)Google Scholar
  40. 40.
    B.A. Cevallos-Casals, L. Cisneros-Zevallos, Food Chem. 86(1), 69–77 (2004)CrossRefGoogle Scholar
  41. 41.
    M.M. Jahangir, T. Jiang, Z. Jiang, M. Amjad, T. Ying, J. Food Agric. Environ. 9(2), 91–95 (2011)Google Scholar
  42. 42.
    J. Chlopicka, P. Pasko, S. Gorinstein, A. Jedryas, P. Zagrodzki, LWT-Food Sci. Technol. 46(2), 548–555 (2012)CrossRefGoogle Scholar
  43. 43.
    O. Jongsutjarittam, S. Charoenrein, Carbohydr. Polym. 114, 133–140 (2014)CrossRefGoogle Scholar
  44. 44.
    X. Lian, C. Wang, K. Zhang, L. Li, Int. J. Biol Macromol. 64, 288–293 (2014)CrossRefGoogle Scholar
  45. 45.
    L. Xijun, S. Haibo, L. Lin, W. Hong, Z. Nan, Starch. 66, 361–368 (2014)CrossRefGoogle Scholar
  46. 46.
    A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, G.I.M. Waterhouse, Food Res. Int. 50(2), 574–585 (2013)CrossRefGoogle Scholar
  47. 47.
    Q. Ge, J. Mao, A. Zhang, Y. Wang, P.-l. Sun, Food Sci. Biotechnol. 22(2), 301–307 (2013)CrossRefGoogle Scholar
  48. 48.
    K.O. Falade, A.S. Christopher, Food Hydrocoll. 44, 478–490 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Abdellatief A. Sulieman
    • 1
    • 2
    Email author
  • Ke-Xue Zhu
    • 1
  • Wei Peng
    • 1
  • Hayat A. Hassan
    • 2
  • Mohammed Obadi
    • 1
  • Mohamed I. Ahmed
    • 1
  • Hui-Ming Zhou
    • 1
    Email author
  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Department of Cereal Science and Technology, Ministry of Agriculture and ForestsNational Food Research CenterKhartoum NorthSudan

Personalised recommendations