Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1873–1883 | Cite as

Towards bridging wheat gap in Egypt by using cassava, quinoa and guar as supplements for the production of balady bread

  • Amira Sh. Soliman
  • Mohamed S. Abbas
  • M. F. Abol-Ella
  • Mamdouh M. T. Eassawy
  • Rabab H. MohamedEmail author
Original Paper
  • 67 Downloads

Abstract

As Egypt is the largest wheat importer globally, the government is aiming to find alternatives to reduce wheat imports and to cultivate reclaimed lands. Comparative studies were conducted to investigate the effect of substituting portions of wheat flour with quinoa, cassava and guar flours at levels of 20%, 30%, and 5%, respectively, on chemical, rheological and sensory characteristics of the Egyptian balady bread that is currently produced from wheat only and to enhance its nutritional and baking quality. The study was carried out in the Agricultural Research Center, Egypt. Results proved that guar gave poor sensory characteristics, in addition to its insignificant substitution level (5%). Substituting wheat flour with 20% quinoa resulted in elevating protein, fat and fiber percentages than that of wheat flour (16.4, 2.15 and 1.01%, respectively). Bread made from quinoa–wheat blend gave the lowest fungal count and the highest shelf life (8 days), but resulted in significant changes in stability, volumes, texture, and structure. Substituting wheat with 30% cassava gave the highest carbohydrate content, didn’t change any of the rheological properties and no significant difference was noticed between wheat flour and 30% cassava–wheat bread in all sensory tests. Substituting wheat with quinoa or cassava at the above-mentioned percentages is acceptable and appropriate in terms of their flavor. Although cassava has higher substitution level than that of quinoa, still, we recommend expanding quinoa cultivation in Egypt due to its acceptability, suitability to the Egyptian environment, health benefits, low input cost and more importantly its high protein and fiber contents.

Keywords

Chemical properties Rheological properties Shelf life 

Notes

Funding

This study was funded by the Government of Egypt.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    F.A.H. El-Soukkary, Plant Foods Hum. Nutr. 56, 365–384 (2001)CrossRefGoogle Scholar
  2. 2.
    D. Litwinek, H. Gambuś, B. Mickowska, G. Zięć, W. Berski, J. Microbiol. Biotechnol. Food Sci. 2, 1725–1733 (2013)Google Scholar
  3. 3.
    Food and Agriculture Organization of the United Nations (FAO), Wheat Sector Review—Egypt, Report No. 21 September. (2015) http://www.fao.org/3/a-i4898e.pdf
  4. 4.
    Central Agency for Public Mobilisation and Statistics (CAPMAS), Egypt’s self-sufficiency of wheat 49-1. (2015). https://dailynewsegypt.com/2017/01/18/egypts-self-sufficiency-wheat-49-1-2015-capmas/
  5. 5.
    D. Mitchell, Policy Research Working Paper 4682.The World Bank Development Prospects Group. The World Bank, Washington (2008)Google Scholar
  6. 6.
    M. Jancurová, L. Minarovicová, A. Dandár, Chem. Pap. 63(6):738–741 (2009).  https://doi.org/10.2478/s11696-009-0073-z CrossRefGoogle Scholar
  7. 7.
    Y. Konishi, S. Hirano, H. Tsuboi, M. Wada, Seeds Biosci. Biotechnol. Biochem. 68, 231–234. (2004).  https://doi.org/10.1271/bbb.68.231 CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
    K. Falade, J. Akingbala, Food Rev. Int. 27(1), 51–83 (2010).  https://doi.org/10.1080/87559129.2010.518296 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    F.I. Nweke, New challenges in the cassava transformation in Nigeria and Ghana (No. 118). International Food Policy Research Institute (2004)Google Scholar
  13. 13.
    M. Nagwa Hassan, Improvement of productivity and quality of cassava (Manihot esculenta Crantz) in newly reclaimed lands using some mineral and bio-fertilization treatments in relation to plant density. Ph.D. Thesis, Fac. Agric., Ain Shams Univ., Egypt (2008)Google Scholar
  14. 14.
    A. Shams, Int. J. Water Resour. Arid Environ. 1(5), 318–325 (2011)Google Scholar
  15. 15.
    R. Kumar, P.P. Gupta, B.L. Jalal, J. Mycol. Plant Pathol. 31(1), 38–41 (2001)Google Scholar
  16. 16.
    M. Khater, R. Rania, Effect of sowing dates and foliar spray with algae extract on cluster bean (Cyamopsis tetragonoloba L.). Int. J. Pharm. Tech. Res. 9(9), 75–84 (2016)Google Scholar
  17. 17.
    A.M. Ritva, C.V. Repo, L.A. Serna, Ciênc. Tecnol. Aliment. Campinas 31(1), 225–230 (2011). http://www.scielo.br/pdf/cta/v31n1/35
  18. 18.
    Food and Fertilizer Technology Center (FFTC), Processing Cassava into Flour for Human Food (FFTC Practical Technology, Post-harvest PT2003-17, 2003)Google Scholar
  19. 19.
    American Association of Cereal Chemists (AACC), Method 38-12A, 11th edn (American Association of Cereal Chemists, St Paul, 2005)Google Scholar
  20. 20.
    A.I. Ihekoronye, P.O. Ngoddy, Tropical Fruits and Vegetables, p. 306 (Macmillan Education Ltd., London, 1985)Google Scholar
  21. 21.
    American Association of Cereal, Chemists (AACC), The American Association of Cereal Chemists, 10th edn (American Association of Cereal, Chemists (AACC), St. Paul, 2000)Google Scholar
  22. 22.
    Wheat Associates, Wheat and Flour Testing Methods, Version 2 Wheat Inspection, U.S. Wheat Associates, Sect. 5: Product Tests, Flat Bread. (2007). https://www.grains.k-state.edu/igp/wheatflourbook/wheat-flour-book.pdf
  23. 23.
    E.F. See, W.A. Wan Nadiah, A.A. Noor Aziah, ASEAN Food J. 14(2), 123–130 (2007)Google Scholar
  24. 24.
    A. Eissa Nawal, G.M. El-Habbaa, F.G. Mohamed, M.F. Abou-El-Ella, I.A. Sabek, Egypt. J. Appl. Sci. 27(5), 90–107 (2012)Google Scholar
  25. 25.
    N.I. Bassuony, M.F. Abol-Ela, M.A. Atwa, J. Agric. Sci. 31(5), 3139–3148 (2006)Google Scholar
  26. 26.
    N.I. Bassuony, A.F. Abdel-Salam, Z.M. Abdel-Ghany, A.M. El-Karamany, M. AAtwa, J. Food Dairy Sci. 3(12), 647–667 (2012)Google Scholar
  27. 27.
    B. Singh, N. Singh, J. Food Sci. Technol. 43(3), 251–255 (2006)Google Scholar
  28. 28.
    N. Kumar, B.S. Khatkar, R. Kaushik, Ann. Univ. Dunar. Jos Galati - Food Technol. 37(2), 68–81 (2013)Google Scholar
  29. 29.
    Food and Agriculture Organization (FAO), Guíatécnicapara producción y análisis de almidón de Yuca. Roma: FAO.ISSN, 10204334. (2007). http://www.fao.org/docrep/010/a1028s/a1028s00.htm
  30. 30.
    H. Koyro, S. Eisa, Plant Soil 302, 79–90 (2007).  https://doi.org/10.1007/s11104-007-9457-4 CrossRefGoogle Scholar
  31. 31.
    S.A. Valencia-Chamorro, Food Science and Nutrition, vol. 8 (Academic Press, Amsterdam, 2003), pp. 4895–4902Google Scholar
  32. 32.
    M.J. Koziol, J. Food Compos. Anal. 5, 36–68 (1992)CrossRefGoogle Scholar
  33. 33.
    M.S. Butt, N. Shahzadi, M.K. Sharif, M. Nasir, Food Sci. Nutria. 47, 389–396 (2007).  https://doi.org/10.1080/10408390600846267 Google Scholar
  34. 34.
    A. Charles, K. Sriroth, T. Huang, Food Chem. 92(4), 615–620 (2005)CrossRefGoogle Scholar
  35. 35.
    K.R. Preston, P.R. March, K.H. Tipples, J. Plant Sci. 62(3), 545–553 (1982)Google Scholar
  36. 36.
    M. Hruskova, O. Famera, Czech. J. Food Sci. 21, 91–96 (2003)CrossRefGoogle Scholar
  37. 37.
    H. Perten, K. Bondesson, A. Mjorndal, Cereal Foods World 37, 655–660 (1992)Google Scholar
  38. 38.
    G. Simic, D. Horvat, Z. Jurkovic, G. Drezner, D. Novoselovic, K. Dvojkovic, J Cent Eur. Agric. 7(1), 13–18 (2006)Google Scholar
  39. 39.
    T.A. Shittu, A.O. Raji, L.O. Sanni, Food Res. Int. 40: 280–290. (2007).  https://doi.org/10.1016/j.foodres.2006.10.012 CrossRefGoogle Scholar
  40. 40.
    K. Kahraman, O. Sakyyan, S. Ozturk, H. Koksel, G. Sumnu, A. Dubat, Eur. Food Res. Technol. 227, 565–570 (2008)CrossRefGoogle Scholar
  41. 41.
    F. Chopin, Applications Laboratory, France (2006) http://www.chopin.fr/media/docs/MAB-GB-Web-web
  42. 42.
    H. Wieser, Food Microbiol. 24, 115–119 (2007).  https://doi.org/10.1016/j.fm.2006.07.004 CrossRefGoogle Scholar
  43. 43.
    G.Y. Giami, T. Amasisi, G. Ekiyor, J. Mater. Res. 1, 16–25 (2004)Google Scholar
  44. 44.
    C. Collar, C. Bollain, C.M. Rosell, Food Sci. Technol. Int. 13, 99–107. (2007).  https://doi.org/10.1177/1082013207078341 CrossRefGoogle Scholar
  45. 45.
    R.E. Sanful, S. Darko, Pak. J. Nutr. 9(8), 810–814. (2010).  https://doi.org/10.3923/pjn.2010.810.814. Asian Network for Scientific Information CrossRefGoogle Scholar
  46. 46.
    M.O. Iwe, N. Michael, N.E. Madu, N.E. Obasi, G.I. Onwuka, T.U. Nwabueze, J.O. Onuh, V.U. Asumugha, Agro Technol. 6(3), 166. (2017).  https://doi.org/10.4172/2168-9881.1000166 Google Scholar
  47. 47.
    A. Hoefler, Hydrocolloids (Eagan Press Handbook Series, St. Paul, 2004), pp. 1–98CrossRefGoogle Scholar
  48. 48.
    A.S. Sivam, D.S. Waterhouse, S.Y. Quek, C.O. Perera, J. FoodSci 75(8), 163–174. (2010).  https://doi.org/10.1111/j.1750-3841.2010.01815.x Google Scholar
  49. 49.
    S.H. Park, N. Morita, Food Sci. Technol. Int. 11(6), 471–476 (2005).  https://doi.org/10.1177/1082013205060766 CrossRefGoogle Scholar
  50. 50.
    M.V. Eberhardt, C.Y. Lee, R.H. Liu, Nature 405:903–904. (2000).  https://doi.org/10.1038/35016151 CrossRefGoogle Scholar
  51. 51.
    Y.R. Nsimba, H. Kikuzaki, Y. Konishi, Seeds. Food Chem. 106, 760–766 (2008).  https://doi.org/10.1016/j.foodchem.2007.06.004 CrossRefGoogle Scholar
  52. 52.
    T. Tsuda, Y. Makino, H. Kato, T. Osawa, S. Kawakishi, Biosci. Biotechnol. Biochem. 57(9), 1606–1608 (1993).  https://doi.org/10.1271/bbb.57.1606 CrossRefGoogle Scholar
  53. 53.
    V. Kyzlink, Principles of Food Preservation (Elsevier Publications, Amsterdam, 2001), pp 247–370Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amira Sh. Soliman
    • 1
  • Mohamed S. Abbas
    • 1
  • M. F. Abol-Ella
    • 2
  • Mamdouh M. T. Eassawy
    • 2
  • Rabab H. Mohamed
    • 2
    Email author
  1. 1.Natural Resources Department, Institute of African Research and StudiesCairo UniversityGizaEgypt
  2. 2.The Regional Center for Food and Feed, Agricultural Research CenterGizaEgypt

Personalised recommendations