Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1805–1819 | Cite as

Phenolic profiling and antioxidant capacity of Morchella esculenta L. by chemical and electrochemical methods at multiwall carbon nanotube paste electrode

  • Javed Ahmad WagayEmail author
  • Gulzar Ahmad Nayik
  • Sajad Ahmad Wani
  • Rouf Ahmad Mir
  • Mir Ashfaq Ahmad
  • Qazi Inamur Rahman
  • Deepak Vyas
Original Paper


The present investigation was carried out to know the aboriginal usage of Morchella esculenta L. as an ethnomedicinal food by tribals of Kashmir, an extreme northern state of India for curing of arthritis, osteoporosis, general bone weakness and cure child labour pain and post menopause pain of women. The average long-life expectancy (~ 80 years) and delayed aging ensured the abundant use of M. esculenta L. as the bases of their daily foods as well as their traditional medicine. The antioxidant character of this mushroom was carried out by chemical and electrochemical assays. The chemical assay was done by DPPH, nitric- oxide, super-oxide scavenging and reducing power while as, electrochemical assay was done by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using multi-wall carbon nanotube paste electrode (MWCNTPE) at 0.02 M acetate buffer (pH 4.5). The phenolic profiling of the mushroom was evaluated through Folin–Ciocalteu reagent using gallic acid/ascorbic acid as standard which were qualified and quantified by HPLC-UV technique, respectively. The IC50 values found were 57.02 µg ml−1, 58.02 µg ml−1 and 40.01 µg ml−1 for DPPH, nitric-oxide and superoxide. The electrochemical results have shown one oxidation potential at 1.12 V and positive potential at 1.119 ± 0.01 V in CV and 1.19 V in DPV. DPV at superoxide radical scavenging level of mushroom at dropping mercury electrode (DME) in 0.1 M KCl, produced a reduction peak potential at − 0.160 V. HPLC-UV have confirmed the presence of eight phenolic compounds namely, p-coumaric acid, tocopherol, catechol, rutin, hyperoside, quercetin, ellagic acid and cinnamic acid with quercetin at highest percentage (169.76%).


Electrochemical Morchella esculenta Antioxidant Phenolic compounds 



The authors would like to acknowledge Departments of Botany, Zoology and Chemistry, Dr. H.S.G. Central University Sagar, M.P, India for providing necessary facilities for carrying out this research work. We are also thankful to National Council for Scientific and Technological Development (CNPq) Brazilian Govt. for providing Post Doctoral Fellowship “Science Without Border”.

Author contributions

All the authors have equal contribution in different aspects of the investigation and manuscript preparation. All authors have approved the final manuscript.


  1. 1.
    B. Halliwell, Antioxidants in human health and disease. Annu. Rev. Nutr. 16, 33–50 (1996)CrossRefPubMedGoogle Scholar
  2. 2.
    L. Rackova, M. Oblozinsky, D. Kostalova, V. Kettmann, L. Bezakova, Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. J. Inflamm. (Lond.) 16, 4–15 (2007)Google Scholar
  3. 3.
    V.L. Kinnula, J.D. Crapo, Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol. Med. 36, 718–744 (2004)CrossRefPubMedGoogle Scholar
  4. 4.
    U. Singh, I. Jialal, Oxidative stress and atherosclerosis. Pathophysiology 13, 129–142 (2006)CrossRefPubMedGoogle Scholar
  5. 5.
    K. Sas, H. Robotka, J. Toldi, L. Vécsei, Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system with focus on neurodegenerative disorders. Neurol. Sci. 257, 221–239 (2007)CrossRefGoogle Scholar
  6. 6.
    M.A. Smith, C.A. Rottkampa, A. Nunomura, A.K. Raina, G. Perry, Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta 1502, 139–144 (2000)CrossRefPubMedGoogle Scholar
  7. 7.
    I. Guidi, D. Galimberti, S. Lonati, C. Novembrino, F. Bamonti, M. Tiriticco, C. Fenoglio, E. Venturelli, P. Baron, N. Bresolin, E. Scarpini, Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 27, 262–269 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    J.L. Bolton, M.A. Trush, T.M. Penning, G. Dryhurst, T.J. Monks, Role of quinones in toxicology. Chem. Res. Toxicol. 13, 135–160 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    G.E. Arteel, Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology 124, 778–790 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    B.S. Ramakrishna, R. Varghese, S. Jayakumar, M. Mathan, K.A. Balasubramanian, Circulating antioxidants in ulcerative colitis and their relationship to disease severity and activity. J. Gastroenterol. Hepatol. 124, 90–94 (1997)Google Scholar
  11. 11.
    D.H. Hyun, J.O. Hernandez, M.P. Mattson, R. Decabo, The plasma membrane redox system in aging. Age Res. Rev. 5, 209–220 (2006)CrossRefGoogle Scholar
  12. 12.
    J.M. Upston, L. Kritharides, R. Stocker, The role of vitamin E in ather osclerosis. Prog. Lip. Res. 42, 405–422 (2003)CrossRefGoogle Scholar
  13. 13.
    A.J. Blasco, M.C. Rogerio, M.C. González, A. Escarpa, Electrochemical Index as a screening method to determine “total polyphenolics” in foods: a proposal. Anal. Chim. Acta 539, 237–244 (2005)CrossRefGoogle Scholar
  14. 14.
    S.P. Wasser, A.L. Weis, Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int. J. Med. Mushroom 1, 31–62 (1999)CrossRefGoogle Scholar
  15. 15.
    R. Phillips, Mushrooms of North America, vol. 54 (Little Brown and Company, Boston, 1991), p. 133Google Scholar
  16. 16.
    A.T. Mudasir, A.T. Khurshid, M.M. Mir, M.A. Bhat, S.A. Shawl, Ethnomedicinal survey of shopian, Kashmir (J&K), India. Asian J. Tradit. Med. 4, 1–5 (2009)Google Scholar
  17. 17.
    M. Raza, A. Ahmad, A. Mohammad. The valley of Kashmir, A Geographical Interpretations, vol. 1 (Carolina Academic Press, Srinagar, 1978)Google Scholar
  18. 18.
    R.E. Schultes, The role of ethnobotanist in the search for new medicinal plants. Lloydia. 24, 257–265 (1962)Google Scholar
  19. 19.
    L. Barros, M. Dueñas, I.C.F.R. Ferreira, P. Baptista, P.C. Santos-Buelga, Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 47, 1076–1079 (2009)CrossRefPubMedGoogle Scholar
  20. 20.
    L. Barros, S. Falcão, P. Baptista, C. Freire, M.V. Boas, I.C.F.R. Ferreira, Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 111, 61–66 (2008)CrossRefGoogle Scholar
  21. 21.
    M.C. Sabu, R. Kuttan, Antidiabetic activity of medicinal plants and its relationship with their antioxidant property. J. Ethnopharmacol. 81, 155–160 (2002)CrossRefPubMedGoogle Scholar
  22. 22.
    K. Slinkard, V.L. Singleton, Total phenol analyses, automation and comparison with manual methods. Am. J. Enol. Vitic. 28, 49–55 (1977)Google Scholar
  23. 23.
    J.K. Kim, M.J. Kang, Y.J. Seo, M.Y. Lee, J.H. Song, J.H. Lee, M.E. Kim, Effect of king oyster mushroom (Pleurotus eryngii) on insulin resistance and dyslipidemia in db/db. Food Sci. Biotechnol. 19, 239–242 (2010)CrossRefGoogle Scholar
  24. 24.
    I.C.F.R. Ferreira, P. Baptista, L.V.B. Barros, Free radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal individual cap and stipe activity. Food Chem. 100, 1511–1516 (2007)CrossRefGoogle Scholar
  25. 25.
    A.D. Signore, F. Romeo, M. Giaccio, Content of phenolic substances in Basidiomycetes. Mycol. Res. 5, 552–556 (1997)CrossRefGoogle Scholar
  26. 26.
    W.S. Anthony, L.H. Jonathan, C.A. William, Contribution from the National Cancer Institute and the National Institute of Arthritis and Metabolic Diseases, Internal Report (National Institute of Health, Public Health Services. U.S.Department of Health, Education and Welfare, Bethesda, 1956), pp. 288–291Google Scholar
  27. 27.
    J.B. Zheng, Z.H. Fang, G. Hong, Investigation on electrochemical behavior and scavenging superoxide anion ability of chrysin at mercury electrode. Chin. J. Chem. 23, 1042–1046 (2005)CrossRefGoogle Scholar
  28. 28.
    A. Hailemichael, M. Berhanu, B.M. Begaz, Electrochemical behavior and voltametric determination of Geshoidin and its spectrophotometric and antioxidant properties in aqueous buffer solutions of phenolic compounds in mushrooms. Bull. Chem. Soc. Ethiopia 21, 189–204 (2007)Google Scholar
  29. 29.
    B. Ribeiro, R. Lopes, P.B. Andrade, R.M. Seabra, R.F. Gonçalves, P. Baptista, I. Quelhas, P. Valentão, Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chem. 110, 47–56 (2008)CrossRefPubMedGoogle Scholar
  30. 30.
    N.G. Puttaraju, S.U. Venkateshaiah, S.M. Dharmesh, S.M.N.Urs, R. Somasundaram. Antioxidant activity of indigenous edible mushrooms. J. Agric. Food Chem. 54, 9764–9772 (2006)CrossRefPubMedGoogle Scholar
  31. 31.
    T. Yaltirak, B. Aslim, S. Ozturk, H. Alli, Antimicrobial and antioxidant activities of Russula delica Fr. Food Chem. Toxicol. 47, 2052–2056 (2009)CrossRefPubMedGoogle Scholar
  32. 32.
    G.C. Yen, J.Y. Wu, Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chem. 65, 375–379 (1999)CrossRefGoogle Scholar
  33. 33.
    L. Barros, S. Falcao, P. Baptista, C. Freire, M.V. Boas, I.C.F.R. Ferreira, Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 111, 61–66 (2008)CrossRefGoogle Scholar
  34. 34.
    M.E. Turkoglu, N.M. Duru, Antioxidant and antimicrobial activity of Russula delica Fr: an edidle wild mushroom. Eurasian J. Anal. Chem. 2, 54–67 (2007)CrossRefGoogle Scholar
  35. 35.
    C. Ramesh, M.G. Pattar, Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacogn. Res. 2, 107–112 (2010)CrossRefGoogle Scholar
  36. 36.
    J.L. Mau, K.T. Wu, P.T. Chan, Y.H.Wu, J.T.Peng, Flavour compounds in king oster mushroom (Pleurotus eryngii). J. Agric. Food Chem. 46, 4587–4589 (1998)CrossRefGoogle Scholar
  37. 37.
    A. Cakir, A. Mavi, M.A. Yıldırım, M.E. Duru, M. Harmandar, C. Kazaz, Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. J. Ethnopharmacol. 32, 113–139 (2003)Google Scholar
  38. 38.
    L.K. Jagadish, V.V. Krishnan, R. Shenbhagaraman, V. Kaviyarasan, Comparitive study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus before and after boiling. Afr. J. Biotechnol. 8(4), 654–661 (2009)Google Scholar
  39. 39.
    T. Jayakumar, P.A. Thomas, P. Geraldine, In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov. FdSc Emerg. Technol. 10, 228–234 (2009)CrossRefGoogle Scholar
  40. 40.
    C.M.P. Guerra-Dore, T.C.G. Azevedo, M.C.R. Desouza, L.A. Rego, J.C.M. de Dantas, F.R.F. Silva, H.A.O. Rocha, I.G. Baseia, E.L. Leite, Antiinflammatory, antioxidant and cytotoxic actions of glucan-rich extract from Geastrum saccatum mushroom. Int. Immunopharmacol. 7(9), 1160–1169 (2007)CrossRefPubMedGoogle Scholar
  41. 41.
    A. Braca, N.D. Tommasi, L.D. Bari, C. Pizza, M. Politi, I. Morelli, Antioxidant principles from Bauhinia terapotensis. J. Nat. Prod. 64, 892–895 (2001)CrossRefGoogle Scholar
  42. 42.
    N. Fagali, A. Catalá, Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophys. Chem. 137, 56–62 (2008)CrossRefPubMedGoogle Scholar
  43. 43.
    S.T. Chang, P.G. Miles, Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd edn. (CRC Press, Boca Raton, 2004)CrossRefGoogle Scholar
  44. 44.
    Y.L. Lee, G.W. Huang, Z.C. Liang., J.L. Mau, Antioxidant properties of three extracts from Pleurotus citrinopileatus. Food Sci. Technol. 40, 823–833 (2008)Google Scholar
  45. 45.
    L.P. Zheng, L.W. Gao, J.Q. Zhou, Y.H. Sima, J.W. Wang, Antioxidant activity of aqueous extract of a Tolypocladium sp. fungus isolated from wild Cordycepssinensis. Afr. J. Biotechnol. 7(17), 3004–3010(2008)Google Scholar
  46. 46.
    J.H. Yang, H.C. Lin, J.L. Mau, Antioxidant properties of severalcommercial mushrooms. Food Chem. 77, 229–235 (2002)CrossRefGoogle Scholar
  47. 47.
    L. Barros, S. Falcao, P. Baptista, C. Freire, M.L. Boas, C.F.R. Isabel, Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemicaland electrochemical assays. Food Chem. 111, 61–66 (2008)CrossRefGoogle Scholar
  48. 48.
    Y. Nakajima, Y. Sato, T. Konishi, Antioxidant small phenolic ingredients inInonotus obliquus (persoon) Pilat (Chaga). Chem. Pharm. Bull. 55, 1222–1226 (2007)CrossRefPubMedGoogle Scholar
  49. 49.
    N. Nakatani, S. Kayano, H. Kikuzaki, K. Sumino, K. Katagiri, T. Mitani, Identification, quantitative determination and antioxidative activities of chlorogenic acid isomers in Prune (Prunus domestica). J. Agric. Food Chem. 48, 5512–5516 (2000)CrossRefPubMedGoogle Scholar
  50. 50.
    P.D. Duh, Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free-radical and active oxygen. J. Am. Oil Chem. Soc. 75, 455–461 (1998)CrossRefGoogle Scholar
  51. 51.
    P.D. Duh, P.C. Du, G.C. Yen, Action of methanolic extract of mung hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem. Toxicol. 37, 1055–1061 (1999)CrossRefPubMedGoogle Scholar
  52. 52.
    M. Tanaka, C.W. Kuie, Y. Nagashima, T. Taguchi, Applications of antioxidative Maillard reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi 54, 1409–1414 (1988)CrossRefGoogle Scholar
  53. 53.
    L. Barros, P. Baptista, D.M. Correia, J.S. Morais, I.C.F.R. Ferreira, Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J. Agric. Food Chem. 55, 4781–4788 (2007)CrossRefPubMedGoogle Scholar
  54. 54.
    M. Elmastas, I. Gülçin, O. Isıldak, O.D. Küfrevioğlu, K. Dbaoğlu, H.Y. Aboul Enein, Antioxidant capacity of bay (Laurus nobilis L.) leave extracts. J. Iran. Chem. Soc. 3(3), 258–266 (2006)CrossRefGoogle Scholar
  55. 55.
    Y.S. Velioglu, G. Mazza, L. Gao, B.D. Oomah, Antioxidantactivity and total phenolics in selected fruits, vegetables, and grainproducts. J. Agric. Food Chem. 46, 4113–4117 (1998)CrossRefGoogle Scholar
  56. 56.
    P. Mattila, K. Konko, M. Eurola, J.M. Pihlava, J. Astola, L. Vahteristo, V. Hietaniemi, J. Kumpulain en, M. Valtonen, V. Piironen, Contents of vitamins, mineral elements and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49, 2343–2348 (2001)CrossRefPubMedGoogle Scholar
  57. 57.
    P.A. Kilmartin, H. Zou, A.L. Waterhouse, A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics. J. Agric. Food Chem. 49, 1957–1965 (2001)CrossRefPubMedGoogle Scholar
  58. 58.
    M.S. Cosio, S. Buratti, S. Mannino, S. Benedetti, Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiatae family. Food Chem. 97, 725–731 (2006)CrossRefGoogle Scholar
  59. 59.
    C.M.A. Brett, A.M.O. Brett, Electrochemistry—Principles Methods and Applications (Oxford University Press, Oxford, 1993), p. 219Google Scholar
  60. 60.
    A.R. Fiorucci, E. Cavalheiro, The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations. J. Pharm. Biomed. Anal. 28(5), 909–915 (2002)CrossRefPubMedGoogle Scholar
  61. 61.
    S. Chevion, M.A. Roberts, M. Chevion, The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic. Biol. Med. 28, 860–870 (2000)CrossRefPubMedGoogle Scholar
  62. 62.
    I.C. Gherghi, S.T. Girousi, A.N. Voulgaropoulos, T.R. Tzimou, Study of interactions between actinomycin D and DNA on carbon paste electrode and on the hanging mercury drop (HMDE) surface. J. Pharm. Biomed. Anal. 31(6), 1065–1078 (2003)CrossRefPubMedGoogle Scholar
  63. 63.
    L. Barros, S. Falcao, P. Baptista, C. Freire, M. Vilas-Boas, I.C.F.R. Ferreira, Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 111, 61–66 (2008)CrossRefGoogle Scholar
  64. 64.
    S. Kumar, Y.P. Sharma, Diversity of wild mushrooms from Jammu and Kashmir. In: Proceedings of the7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7) (2011)Google Scholar
  65. 65.
    K. Yongabi, M. Agho, M.D. Carrera, Ethnomycological studies on wild mushrooms in Cameroon, Central Africa. Micol. Apl. Int. 16(2), 34–36 (2004)Google Scholar
  66. 66.
    C. Hobbs, Medicinal Mushrooms: An Exploration of Tradition, Healing and Culture, 2nd edn. (Botanica Press, Santa Cruz, 1995)Google Scholar
  67. 67.
    S.A. Pala, A.H. Wani, M.Y. Bhat, Ethnomycological studies of some wild medicinal and edible mushrooms in the Kashmir Himalayas (India). Int. J. Med. Mushrooms 15(2), 211–220 (2013)CrossRefPubMedGoogle Scholar
  68. 68.
    K.M. Panda, K. Tayung, Documentation and ethno medicinal knowledge on wild edible mushrooms among ethnic tribes of Northern Odisha, India. Asian J. Pharm. Clin. Res. 8(4), 139–143 (2015)Google Scholar
  69. 69.
    B. Kumari, N.S. Atri, R.C. Upadhya, Culinary staus and sociobiology of termitophilous and lepiotoid mushrooms of North West India. World J. Agric. Sci. 8(4), 415–420 (2015)Google Scholar
  70. 70.
    B.A. Wani, R.H. Bodha, A.H. Wani, Nutrional and medicinal importance of mushrooms. J. Med. Plants Res. 4(24), 2598–2604 (2010)CrossRefGoogle Scholar
  71. 71.
    A. Keles, I. Koca, H. Genccelep, Antioxidant properties of wild edible mushrooms. J. Food Process. Technol. 2, 1–6 (2011)Google Scholar
  72. 72.
    A.H. Wani, R.H. Boda, T. Nissa, L.A. Peer, Potential antioxidant activity of some mushrooms growing in Kashmir Valley. Mycopath 8(2), 71–75 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Javed Ahmad Wagay
    • 1
    • 3
    Email author
  • Gulzar Ahmad Nayik
    • 2
  • Sajad Ahmad Wani
    • 2
  • Rouf Ahmad Mir
    • 3
  • Mir Ashfaq Ahmad
    • 3
  • Qazi Inamur Rahman
    • 4
  • Deepak Vyas
    • 5
  1. 1.Department of Plant Science, Agriculture and Rural TransformationUniversity of GondarGondarEthiopia
  2. 2.Department of Food Science and TechnologyGDC ShopianSrinagarIndia
  3. 3.Department of BotanyGDC ShopianSrinagarIndia
  4. 4.Department of ChemistryIntegral UniversityLukhnowIndia
  5. 5.Department of BotanyDr. Harisingh Gour Central UniversitySagarIndia

Personalised recommendations